In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Fi...In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation.展开更多
In this paper, we propose a new architecture that combines prediction and decision-making in the form of a hybrid framework aimed at providing clinicians with transparent and accurate maps, or charts, to guide and to ...In this paper, we propose a new architecture that combines prediction and decision-making in the form of a hybrid framework aimed at providing clinicians with transparent and accurate maps, or charts, to guide and to support treatment decisions, and to interrogate the clinical patients’ course as it develops. These maps should be patient-specific, with options displayed of possible treatment pathways. They would suggest the optimal care pathways, and the shortest routes to the most efficient care, by predicting clinical progress, testing the ensuing suggestions against the developing clinical state and patient condition, and suggesting new options as necessary. These maps should also mine an extensive database of accumulated patient data, modelled diseases, and modelled patient-responses based on expert-derived rules. These individualized hierarchical targets, which are implemented in order to prevent life-threatening illnesses, will also have to “adapt” to the patient’s altering clinical condition. Therapies that support one system can destabilize others and selecting which specific support to prioritize is an uncertain process, the prioritization of which can vary between clinical experts. Whilst clinical therapeutic decisions can be made with some degree of anticipation of the “likely” outcome (based on the experts’ opinion and judgment), treatment is essentially rooted in the present, and is dependent on analyzing the current clinical condition and available data. The recursive learning approach presented in this paper, allows decision rules to predict the possible future course, and reflects back derived information from such projections to the present time and thus support proactive clinical care rather than reactive clinical care. The proposed framework for such a patient map supports and enables an optimized choice from available options and also ensures that decisions are based on both the available evidence and a database of best clinical practice. Preliminary results are encouraging and i展开更多
基金supported by the National Natural Science Foundation of China(61472324 61671383)+1 种基金Shaanxi Key Industry Innovation Chain Project(2018ZDCXL-G-12-2 2019ZDLGY14-02-02)
文摘In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation.
文摘In this paper, we propose a new architecture that combines prediction and decision-making in the form of a hybrid framework aimed at providing clinicians with transparent and accurate maps, or charts, to guide and to support treatment decisions, and to interrogate the clinical patients’ course as it develops. These maps should be patient-specific, with options displayed of possible treatment pathways. They would suggest the optimal care pathways, and the shortest routes to the most efficient care, by predicting clinical progress, testing the ensuing suggestions against the developing clinical state and patient condition, and suggesting new options as necessary. These maps should also mine an extensive database of accumulated patient data, modelled diseases, and modelled patient-responses based on expert-derived rules. These individualized hierarchical targets, which are implemented in order to prevent life-threatening illnesses, will also have to “adapt” to the patient’s altering clinical condition. Therapies that support one system can destabilize others and selecting which specific support to prioritize is an uncertain process, the prioritization of which can vary between clinical experts. Whilst clinical therapeutic decisions can be made with some degree of anticipation of the “likely” outcome (based on the experts’ opinion and judgment), treatment is essentially rooted in the present, and is dependent on analyzing the current clinical condition and available data. The recursive learning approach presented in this paper, allows decision rules to predict the possible future course, and reflects back derived information from such projections to the present time and thus support proactive clinical care rather than reactive clinical care. The proposed framework for such a patient map supports and enables an optimized choice from available options and also ensures that decisions are based on both the available evidence and a database of best clinical practice. Preliminary results are encouraging and i