The main pathways of primary sludge(PS)ultrasonic disintegration were analyzed at the sonication frequency of 20 kH z and the thermal effect on PS disintegration was investigated.By adding Na HCO3as a scavenger to ent...The main pathways of primary sludge(PS)ultrasonic disintegration were analyzed at the sonication frequency of 20 kH z and the thermal effect on PS disintegration was investigated.By adding Na HCO3as a scavenger to entrap the free hydroxyl radicals,cavitation contributed to 82.91%of the total sonication effect.The power consumed by temperature rising accounted for more than40%of ultrasound power input at the power density of 0.215 W/m L and the sonication time of 10 min.With the thermal insulation of polyfoam coating during sonication,a 18.37%of soluble chemical oxygen demand(SCOD)increment was observed.With the process of pre-heating the PS before sonication,64.15%of SCOD increment was achieved.Compared with the particle size of 13.77μm for the sonicated PS,the sludge mean particle size decreased to 12.83 and11.98μm by applying polyfoam coating and pre-heating the PS to enhance the cavitation and thermal effect.It suggested that if thermal energy consumption was relieved during the sonication process of PS,more energy could be used to disintegrate the sludge.展开更多
Prompting high content of reclaimed asphalt pavement(RAP) to be used in road building and maintenance has drawn great attention. The application of rejuvenators is an efficient way to ensure the performance of recycle...Prompting high content of reclaimed asphalt pavement(RAP) to be used in road building and maintenance has drawn great attention. The application of rejuvenators is an efficient way to ensure the performance of recycled asphalt mixtures. However, as various types of rejuvenators emerging, limited understanding about rejuvenation poses challenges to put effective ones into use. For precisely evaluating the performance of rejuvenators, plenty of studies were conducted to ascertain the fundamental mechanism of rejuvenating from the microscopic view. This paper provides an overview of studies focusing on the change inside asphalt after adding rejuvenators. Chemical compositions of rejuvenators were collected as basic information. Both laboratorial experiments and molecular dynamic simulations were investigated to not only compare the effectiveness of several rejuvenators but also explain the rejuvenating mechanism. Finally, functional groups of rejuvenator structures were comprehensively examined to provide global understanding about how chemical compositions influence the efficacy of rejuvenators. This review highlights that the essential capacity of a true rejuvenator is to disturb asphaltene agglomerations. Besides, the molecular structures of rejuvenators will not only affect their deagglomerating abilities but also the performances of diffusion and durability. It has been found that gel-permeation chromatography(GPC) analysis is effective in evaluating the performance of rejuvenators, while Fourier transform infrared spectroscopy(FT-IR) and SARA(saturates, aromatics, resins and asphaltenes) analysis are only suitable for assessing asphalt oxidization. In addition, comparing some tests can only detect changes, molecular dynamic simulation can reveal the mechanism both of data and vision. The results of this work can provide comprehensive knowledge for the evaluation and development of rejuvenators.展开更多
Deagglomeration of cohesive particles in combination with coarse carrier is a key requirement for inhaled formulations.The aim of the project was to propose a mathematical approach to understand aerosolization behavio...Deagglomeration of cohesive particles in combination with coarse carrier is a key requirement for inhaled formulations.The aim of the project was to propose a mathematical approach to understand aerosolization behaviour of micronized particles alone and in formulation with carriers.Salbutamol sulphate and salmeterol xinafoate were blended separately with fine lactose(ratio 1:4)and fine and coarse lactose(1:4:63.5).Laser diffraction was employed to characterize the powder median particle size.The deagglomeration of micronized materials followed an asymptotic monoexponential relationship.When the coarse lactose was added,the relationship fitted a bi-exponential equation showing an easily and a poorly dispersed fraction.Using model hydrophobic and hydrophilic APIs,this study has demonstrated the utility of an analytical approach that can parameterize deagglomeration behaviour of carrier-free and carrier-based inhalation formulations.The analytical approach provides the ability to systematically study the effect of material,formulation and processing factors on deagglomeration behaviour.展开更多
基金National Natural Science Foundation of China(No.51478099)Scientific Research Foundation for Returned Overseas Chinese Scholars of China(No.SEM-11W11329)
文摘The main pathways of primary sludge(PS)ultrasonic disintegration were analyzed at the sonication frequency of 20 kH z and the thermal effect on PS disintegration was investigated.By adding Na HCO3as a scavenger to entrap the free hydroxyl radicals,cavitation contributed to 82.91%of the total sonication effect.The power consumed by temperature rising accounted for more than40%of ultrasound power input at the power density of 0.215 W/m L and the sonication time of 10 min.With the thermal insulation of polyfoam coating during sonication,a 18.37%of soluble chemical oxygen demand(SCOD)increment was observed.With the process of pre-heating the PS before sonication,64.15%of SCOD increment was achieved.Compared with the particle size of 13.77μm for the sonicated PS,the sludge mean particle size decreased to 12.83 and11.98μm by applying polyfoam coating and pre-heating the PS to enhance the cavitation and thermal effect.It suggested that if thermal energy consumption was relieved during the sonication process of PS,more energy could be used to disintegrate the sludge.
基金supported by the National Natural Science Foundation of China(51978070)the Shaanxi Natural Science Basic Research Project(2020JM-265)。
文摘Prompting high content of reclaimed asphalt pavement(RAP) to be used in road building and maintenance has drawn great attention. The application of rejuvenators is an efficient way to ensure the performance of recycled asphalt mixtures. However, as various types of rejuvenators emerging, limited understanding about rejuvenation poses challenges to put effective ones into use. For precisely evaluating the performance of rejuvenators, plenty of studies were conducted to ascertain the fundamental mechanism of rejuvenating from the microscopic view. This paper provides an overview of studies focusing on the change inside asphalt after adding rejuvenators. Chemical compositions of rejuvenators were collected as basic information. Both laboratorial experiments and molecular dynamic simulations were investigated to not only compare the effectiveness of several rejuvenators but also explain the rejuvenating mechanism. Finally, functional groups of rejuvenator structures were comprehensively examined to provide global understanding about how chemical compositions influence the efficacy of rejuvenators. This review highlights that the essential capacity of a true rejuvenator is to disturb asphaltene agglomerations. Besides, the molecular structures of rejuvenators will not only affect their deagglomerating abilities but also the performances of diffusion and durability. It has been found that gel-permeation chromatography(GPC) analysis is effective in evaluating the performance of rejuvenators, while Fourier transform infrared spectroscopy(FT-IR) and SARA(saturates, aromatics, resins and asphaltenes) analysis are only suitable for assessing asphalt oxidization. In addition, comparing some tests can only detect changes, molecular dynamic simulation can reveal the mechanism both of data and vision. The results of this work can provide comprehensive knowledge for the evaluation and development of rejuvenators.
文摘Deagglomeration of cohesive particles in combination with coarse carrier is a key requirement for inhaled formulations.The aim of the project was to propose a mathematical approach to understand aerosolization behaviour of micronized particles alone and in formulation with carriers.Salbutamol sulphate and salmeterol xinafoate were blended separately with fine lactose(ratio 1:4)and fine and coarse lactose(1:4:63.5).Laser diffraction was employed to characterize the powder median particle size.The deagglomeration of micronized materials followed an asymptotic monoexponential relationship.When the coarse lactose was added,the relationship fitted a bi-exponential equation showing an easily and a poorly dispersed fraction.Using model hydrophobic and hydrophilic APIs,this study has demonstrated the utility of an analytical approach that can parameterize deagglomeration behaviour of carrier-free and carrier-based inhalation formulations.The analytical approach provides the ability to systematically study the effect of material,formulation and processing factors on deagglomeration behaviour.