Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the com...Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg-de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.展开更多
The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary ...The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.展开更多
The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differe...The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.展开更多
From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differentia...From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differential equations which approximate the perturbed mKdV-Burgers equation is constructed and the corresponding general approximate symmetry reduction is derived; thereby infinite series solutions and general formulae can be obtained. The obtained result shows that the zero-order similarity solution to the mKdV-Burgers equation satisfies the Painleve II equation. Also, at the level of travelling wave reduction, the general solution formulae are given for any travelling wave solution of an unperturbed mKdV equation. As an illustrative example, when the zero-order tanh profile solution is chosen as an initial approximate solution, physically approximate similarity solutions are obtained recursively under the appropriate choice of parameters occurring during computation.展开更多
Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the phy...Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the physiological processes in the nerve cell. Widely used models include: the Hodgkin-Huxley (H-H) model, which is based entirely on the electrical activity of the nerve cell;and the Heimburg and Jackson (H-J), model based on the thermodynamic activity of the nerve cell. These classes of models do not, individually, give a complete picture of the processes that lead to nerve pulse generation and propagation. Recently, a hybrid model proposed by Mengnjo, Dikandé and Ngwa (M-D-N), takes into consideration both the electrical and thermodynamic activities of the nerve cell. In their work, the first three bound states of the model are analytically computed and they showed great resemblance to some of the experimentally observed pulse profiles. With these bound states, the M-D-N model reduces to an initial value problem of a linear parabolic partial differential equation with variable coefficients. In this work we consider the resulting initial value problem and, using the theory of function spaces, propose and prove conditions under which such equations will admit unique solutions. We then verify that the resulting initial value problem from the M-D-N model satisfies these conditions and so has a unique solution. Given that the derived initial value problem is complex and there are no known analytic techniques that can be deployed to obtain its solution, we designed a numerical experiment to estimate the solutions. The simulations revealed that the unique solution is a stable pulse that propagates in the x-t plane with constant velocity and maintains the shape of the initial profile.展开更多
In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplec...In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplectic algorithms, eight local energy-conserving algo- rithms and eight local momentum-conserving algorithms. Among these algorithms, some have been discussed and widely used while the most are new. The outstanding advantage of these proposed algorithms is that they conserve the local structures in any time-space re- gion exactly. Therefore, the local structure-preserving algorithms overcome the restriction of global structure-preserving algorithms on the boundary conditions. Numerical experiments are conducted to show the performance of the proposed methods. Moreover, the unified framework can be easily applied to many other equations.展开更多
A high-order finite difference Pade scheme also called compact scheme for solving Korteweg-de Vries (KdV) equations, which preserve energy and mass conservations, was developed in this paper. This structure-preservi...A high-order finite difference Pade scheme also called compact scheme for solving Korteweg-de Vries (KdV) equations, which preserve energy and mass conservations, was developed in this paper. This structure-preserving algorithm has been widely applied in these years for its advantage of maintaining the inherited properties. For spatial discretization, the authors obtained an implicit compact scheme by which spatial derivative terms may be approximated through combining a few knots. By some numerical examples including propagation of single soliton and interaction of two solitons, the scheme is proved to be effective.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10472029).
文摘Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg-de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.
基金The National Basic Research Program of China under contract Nos 2011CB403503 and 2012CB955601the Scientific Research Fund of the Second Institute of Oceanography, the State Oceanic Administration of China under contract Nos JG1009, JT1006 and JT0905
文摘The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.
文摘The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.
基金supported by the National Natural Science Foundations of China(Grant Nos 10735030,10475055,and 90503006)the National Basic Research Program of China(Grant No 2007CB814800)+1 种基金the Science Foundation for Post Doctorate Research from the Ministry of Science and Technology of China(Grant No 20070410727)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No SJ08A09)
文摘From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differential equations which approximate the perturbed mKdV-Burgers equation is constructed and the corresponding general approximate symmetry reduction is derived; thereby infinite series solutions and general formulae can be obtained. The obtained result shows that the zero-order similarity solution to the mKdV-Burgers equation satisfies the Painleve II equation. Also, at the level of travelling wave reduction, the general solution formulae are given for any travelling wave solution of an unperturbed mKdV equation. As an illustrative example, when the zero-order tanh profile solution is chosen as an initial approximate solution, physically approximate similarity solutions are obtained recursively under the appropriate choice of parameters occurring during computation.
文摘Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the physiological processes in the nerve cell. Widely used models include: the Hodgkin-Huxley (H-H) model, which is based entirely on the electrical activity of the nerve cell;and the Heimburg and Jackson (H-J), model based on the thermodynamic activity of the nerve cell. These classes of models do not, individually, give a complete picture of the processes that lead to nerve pulse generation and propagation. Recently, a hybrid model proposed by Mengnjo, Dikandé and Ngwa (M-D-N), takes into consideration both the electrical and thermodynamic activities of the nerve cell. In their work, the first three bound states of the model are analytically computed and they showed great resemblance to some of the experimentally observed pulse profiles. With these bound states, the M-D-N model reduces to an initial value problem of a linear parabolic partial differential equation with variable coefficients. In this work we consider the resulting initial value problem and, using the theory of function spaces, propose and prove conditions under which such equations will admit unique solutions. We then verify that the resulting initial value problem from the M-D-N model satisfies these conditions and so has a unique solution. Given that the derived initial value problem is complex and there are no known analytic techniques that can be deployed to obtain its solution, we designed a numerical experiment to estimate the solutions. The simulations revealed that the unique solution is a stable pulse that propagates in the x-t plane with constant velocity and maintains the shape of the initial profile.
文摘In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplectic algorithms, eight local energy-conserving algo- rithms and eight local momentum-conserving algorithms. Among these algorithms, some have been discussed and widely used while the most are new. The outstanding advantage of these proposed algorithms is that they conserve the local structures in any time-space re- gion exactly. Therefore, the local structure-preserving algorithms overcome the restriction of global structure-preserving algorithms on the boundary conditions. Numerical experiments are conducted to show the performance of the proposed methods. Moreover, the unified framework can be easily applied to many other equations.
文摘A high-order finite difference Pade scheme also called compact scheme for solving Korteweg-de Vries (KdV) equations, which preserve energy and mass conservations, was developed in this paper. This structure-preserving algorithm has been widely applied in these years for its advantage of maintaining the inherited properties. For spatial discretization, the authors obtained an implicit compact scheme by which spatial derivative terms may be approximated through combining a few knots. By some numerical examples including propagation of single soliton and interaction of two solitons, the scheme is proved to be effective.