期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
两类数据驱动计算均匀化方法对比研究
1
作者 白晓伟 赵鲁阳 +3 位作者 李亮 罗利龙 阳杰 胡衡 《力学学报》 EI CAS CSCD 北大核心 2024年第7期1931-1942,共12页
目前针对非均质材料与结构的多尺度仿真尚面临本构建模复杂和多尺度计算成本高的难题.数据驱动计算均匀化方法一方面通过数据科学的手段降低与本构模型相关的人力和时间成本,另一方面将耗时的细观问题计算移至线下进行,从而显著提升非... 目前针对非均质材料与结构的多尺度仿真尚面临本构建模复杂和多尺度计算成本高的难题.数据驱动计算均匀化方法一方面通过数据科学的手段降低与本构模型相关的人力和时间成本,另一方面将耗时的细观问题计算移至线下进行,从而显著提升非均质材料与结构的在线计算效率.该方法按控制方程的来源可大致分为两类:第一类是基于能量泛函的数据驱动算法,旨在通过人工智能手段高效地获取材料本构关系,继而在经典计算力学框架下通过能量极值求解问题;第二类是基于距离泛函的数据驱动算法,其绕开材料本构建模过程,直接利用本构数据中的点与满足守恒方程的点的距离极值寻求问题的解.文章简要回顾两类数据驱动计算均匀化方法的求解思路,以纤维增强复合材料结构为例,分别从定性和定量的角度分析样本数据量对两类算法计算效率和精度的影响,继而从算法实现、计算精度、计算效率和后处理等方面进行对比分析,探讨两者在求解多尺度问题时的优势与不足,以期为发展高效的非均质材料结构分析技术提供参考. 展开更多
关键词 数据驱动计算力学 计算均匀化 非均质材料与结构
下载PDF
Data-driven computing in elasticity via kernel regression 被引量:2
2
作者 Yoshihiro Kanno 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期361-365,I0003,共6页
This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to o... This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to obtain a static equilibrium state of an elastic structure. Preliminary numerical experiments illustrate that, compared with existing methods, the proposed method finds a reasonable solution even if data points distribute coarsely in a given material data set. 展开更多
关键词 data-driven computational mechanics Model-free method Nonparametric method Kernel regression Nadaraya–Watson estimator
下载PDF
A data-based CR-FPK method for nonlinear structural dynamic systems 被引量:1
3
作者 Jie Li Zhongming Jiang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第4期231-244,298,共15页
Stochastic dynamic analysis of the nonlinear system is an open research question which has drawn many scholars'attention for its importance and challenge.Fokker–Planck–Kolmogorov(FPK)equation is of great signifi... Stochastic dynamic analysis of the nonlinear system is an open research question which has drawn many scholars'attention for its importance and challenge.Fokker–Planck–Kolmogorov(FPK)equation is of great significance because of its theoretical strictness and computational accuracy.However,practical difficulties with the FPK method appear when the analysis of multi-degree-offreedom(MDOF)with more general nonlinearity is required.In the present paper,by invoking the idea of equivalence of probability flux,the general high-dimensional FPK equation related to MDOF system is reduced to one-dimensional FPK equation.Then a cell renormalized method(CRM)which is based on the numerical reconstruction of the derived moments of FPK equation is introduced by coarsening the continuous state space into a discretized region of cells.Then the cell renormalized FPK(CR-FPK)equation is solved by difference method.Three numerical examples are illustrated and the effectiveness of proposed method is assessed and verified. 展开更多
关键词 data-driven computational mechanics FPK equation DIMENSION reduction Cell RENORMALIZATION MODEL-FREE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部