Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data...Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.展开更多
This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模...概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.展开更多
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
Aviation accidents are currently one of the leading causes of significant injuries and deaths worldwide. This entices researchers to investigate aircraft safety using data analysis approaches based on an advanced mach...Aviation accidents are currently one of the leading causes of significant injuries and deaths worldwide. This entices researchers to investigate aircraft safety using data analysis approaches based on an advanced machine learning algorithm.To assess aviation safety and identify the causes of incidents, a classification model with light gradient boosting machine (LGBM)based on the aviation safety reporting system (ASRS) has been developed. It is improved by k-fold cross-validation with hybrid sampling model (HSCV), which may boost classification performance and maintain data balance. The results show that employing the LGBM-HSCV model can significantly improve accuracy while alleviating data imbalance. Vertical comparison with other cross-validation (CV) methods and lateral comparison with different fold times comprise the comparative approach. Aside from the comparison, two further CV approaches based on the improved method in this study are discussed:one with a different sampling and folding order, and the other with more CV. According to the assessment indices with different methods, the LGBMHSCV model proposed here is effective at detecting incident causes. The improved model for imbalanced data categorization proposed may serve as a point of reference for similar data processing, and the model’s accurate identification of civil aviation incident causes can assist to improve civil aviation safety.展开更多
In order to improve the accuracy of used car price prediction,a machine learning prediction model based on the retention rate is proposed in this paper.Firstly,a random forest algorithm is used to filter the variables...In order to improve the accuracy of used car price prediction,a machine learning prediction model based on the retention rate is proposed in this paper.Firstly,a random forest algorithm is used to filter the variables in the data.Seven main characteristic variables that affect used car prices,such as new car price,service time,mileage and so on,are filtered out.Then,the linear regression classification method is introduced to classify the test data into high and low retention rate data.After that,the extreme gradient boosting(XGBoost)regression model is built for the two datasets respectively.The prediction results show that the comprehensive evaluation index of the proposed model is 0.548,which is significantly improved compared to 0.488 of the original XGBoost model.Finally,compared with other representative machine learning algorithms,this model shows certain advantages in terms of mean absolute percentage error(MAPE),5%accuracy rate and comprehensive evaluation index.As a result,the retention rate-based machine learning model established in this paper has significant advantages in terms of the accuracy of used car price prediction.展开更多
As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and effic...As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.展开更多
基金supported by the National Hi-tech Research and Development Program of China(863Program)(No.2007AA09Z310) National Natural Science Foundation of China(Grant No.40774029 40374024)+1 种基金 the Fundamental Research Funds for the Central Universities(Grant No.2010ZY53) the Program for New Century Excellent Talents in University(NCET)
文摘Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
文摘概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
基金supported by the National Natural Science Foundation of China Civil Aviation Joint Fund (U1833110)Research on the Dual Prevention Mechanism and Intelligent Management Technology f or Civil Aviation Safety Risks (YK23-03-05)。
文摘Aviation accidents are currently one of the leading causes of significant injuries and deaths worldwide. This entices researchers to investigate aircraft safety using data analysis approaches based on an advanced machine learning algorithm.To assess aviation safety and identify the causes of incidents, a classification model with light gradient boosting machine (LGBM)based on the aviation safety reporting system (ASRS) has been developed. It is improved by k-fold cross-validation with hybrid sampling model (HSCV), which may boost classification performance and maintain data balance. The results show that employing the LGBM-HSCV model can significantly improve accuracy while alleviating data imbalance. Vertical comparison with other cross-validation (CV) methods and lateral comparison with different fold times comprise the comparative approach. Aside from the comparison, two further CV approaches based on the improved method in this study are discussed:one with a different sampling and folding order, and the other with more CV. According to the assessment indices with different methods, the LGBMHSCV model proposed here is effective at detecting incident causes. The improved model for imbalanced data categorization proposed may serve as a point of reference for similar data processing, and the model’s accurate identification of civil aviation incident causes can assist to improve civil aviation safety.
基金Supported by the Postgraduate Education Reform Project of Yangzhou University (JGLX2021_002)。
文摘In order to improve the accuracy of used car price prediction,a machine learning prediction model based on the retention rate is proposed in this paper.Firstly,a random forest algorithm is used to filter the variables in the data.Seven main characteristic variables that affect used car prices,such as new car price,service time,mileage and so on,are filtered out.Then,the linear regression classification method is introduced to classify the test data into high and low retention rate data.After that,the extreme gradient boosting(XGBoost)regression model is built for the two datasets respectively.The prediction results show that the comprehensive evaluation index of the proposed model is 0.548,which is significantly improved compared to 0.488 of the original XGBoost model.Finally,compared with other representative machine learning algorithms,this model shows certain advantages in terms of mean absolute percentage error(MAPE),5%accuracy rate and comprehensive evaluation index.As a result,the retention rate-based machine learning model established in this paper has significant advantages in terms of the accuracy of used car price prediction.
基金supported by the National Natural Science Foundation of China under Grant No.U19B2021the Key Research and Development Program of Shaanxi under Grant No.2020ZDLGY08-04+1 种基金the Key Technologies R&D Program of He’nan Province under Grant No.212102210084the Innovation Scientists and Technicians Troop Construction Projects of Henan Province.
文摘As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.