Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
This paper presents the data on operation reliability indices and relevant analyses toward China's conventional power generating units in 2009.The units brought into the statistical analysis include 100-MW or abov...This paper presents the data on operation reliability indices and relevant analyses toward China's conventional power generating units in 2009.The units brought into the statistical analysis include 100-MW or above thermal generating units,40-MW or above hydro generating units,and all nuclear generating units.The reliability indices embodied include utilization hours,times and hours of scheduled outages,times and hours of unscheduled outages,equivalent forced outage rate and equivalent availability factor.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
文摘This paper presents the data on operation reliability indices and relevant analyses toward China's conventional power generating units in 2009.The units brought into the statistical analysis include 100-MW or above thermal generating units,40-MW or above hydro generating units,and all nuclear generating units.The reliability indices embodied include utilization hours,times and hours of scheduled outages,times and hours of unscheduled outages,equivalent forced outage rate and equivalent availability factor.