针对地面微地震资料强周期干扰和随机干扰突出的特点以及单一去噪方法无法有效压制噪声的问题,提出了基于单道奇异值分解(singular value decomposition,SVD)和振幅比的联合去噪方法。首先利用单道微地震记录构建分解矩阵,使矩阵各维具...针对地面微地震资料强周期干扰和随机干扰突出的特点以及单一去噪方法无法有效压制噪声的问题,提出了基于单道奇异值分解(singular value decomposition,SVD)和振幅比的联合去噪方法。首先利用单道微地震记录构建分解矩阵,使矩阵各维具有较强的相关性,然后对分解矩阵进行奇异值分解,选取数值居中部分奇异值进行矩阵重构,以达到压制单道微地震记录强周期干扰的目的。其次采用具有伸缩特性时窗的振幅比法改善有效信号与随机噪声的统计特性差异,有效压制微地震资料中的随机噪声。理论模型数据和四川某地区地面微地震射孔资料应用结果表明,联合去噪方法有效地压制了微地震记录中的噪声,提高了资料的信噪比,在很大程度上改善了单一去噪方法无法较好突出微地震有效信号的不足,为后期微地震资料的处理与解释奠定了良好的基础。展开更多
In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the stu...In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the study of S809 low-speed and high-angle airfoil flow.The method is based on the ensemble transform Kalman filter(ETKF)algorithm,which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity constants,increasing the constant disturbance dimensions and designing a fine disturbance interval.The results show that the pressure distribution on the airfoil surface after assimilation is closer to the experimental value than that of the standard Spalart-Allmaras(S-A)model.The separated vortex estimated by filtering is fuller,and the eddy viscosity field information is more abundant,which is physically consistent with the observation information.Therefore,the data assimilation method based on the improved ensemble strategy can more accurately and effectively describe complex turbulence phenomena.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false d...Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.展开更多
文摘针对地面微地震资料强周期干扰和随机干扰突出的特点以及单一去噪方法无法有效压制噪声的问题,提出了基于单道奇异值分解(singular value decomposition,SVD)和振幅比的联合去噪方法。首先利用单道微地震记录构建分解矩阵,使矩阵各维具有较强的相关性,然后对分解矩阵进行奇异值分解,选取数值居中部分奇异值进行矩阵重构,以达到压制单道微地震记录强周期干扰的目的。其次采用具有伸缩特性时窗的振幅比法改善有效信号与随机噪声的统计特性差异,有效压制微地震资料中的随机噪声。理论模型数据和四川某地区地面微地震射孔资料应用结果表明,联合去噪方法有效地压制了微地震记录中的噪声,提高了资料的信噪比,在很大程度上改善了单一去噪方法无法较好突出微地震有效信号的不足,为后期微地震资料的处理与解释奠定了良好的基础。
基金Project supported by the Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research of China(No.614220119040101)the National Natural Science Foundation of China(No.91852115)。
文摘In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the study of S809 low-speed and high-angle airfoil flow.The method is based on the ensemble transform Kalman filter(ETKF)algorithm,which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity constants,increasing the constant disturbance dimensions and designing a fine disturbance interval.The results show that the pressure distribution on the airfoil surface after assimilation is closer to the experimental value than that of the standard Spalart-Allmaras(S-A)model.The separated vortex estimated by filtering is fuller,and the eddy viscosity field information is more abundant,which is physically consistent with the observation information.Therefore,the data assimilation method based on the improved ensemble strategy can more accurately and effectively describe complex turbulence phenomena.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金supported in part by the National Science Foundation of China(61873103,61433006)。
文摘Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.