JH2模型广泛应用于模拟脆性材料的动态力学行为,但是其强度准则和损伤定义存在一定不足,因此本文针对爆炸冲击荷载作用下的岩石材料提出了一个改进JH2模型.首先为强度模型增加了初始屈服面和非线性损伤尺度因子,对拉伸和压缩损伤分别进...JH2模型广泛应用于模拟脆性材料的动态力学行为,但是其强度准则和损伤定义存在一定不足,因此本文针对爆炸冲击荷载作用下的岩石材料提出了一个改进JH2模型.首先为强度模型增加了初始屈服面和非线性损伤尺度因子,对拉伸和压缩损伤分别进行拉压不对称处理,并将体积塑性应变引入到压缩损伤中.将该模型嵌入LS-DYNA材料子程序后,开展一系列单元测试、分离式霍普金森压杆(Split Hopkinson Pressure Bar, SHPB)动态劈裂试验和岩石爆破试验的数值模拟.数值模拟结果表明:改进后的JH2模型克服了原始JH2模型在损伤演化的拉压不对称特性、非线性应变硬化行为、洛德角效应和体积行为等方面的不足,证明了本文所提改进JH2模型的预测精度和应用潜力.展开更多
The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of i...The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.展开更多
文摘JH2模型广泛应用于模拟脆性材料的动态力学行为,但是其强度准则和损伤定义存在一定不足,因此本文针对爆炸冲击荷载作用下的岩石材料提出了一个改进JH2模型.首先为强度模型增加了初始屈服面和非线性损伤尺度因子,对拉伸和压缩损伤分别进行拉压不对称处理,并将体积塑性应变引入到压缩损伤中.将该模型嵌入LS-DYNA材料子程序后,开展一系列单元测试、分离式霍普金森压杆(Split Hopkinson Pressure Bar, SHPB)动态劈裂试验和岩石爆破试验的数值模拟.数值模拟结果表明:改进后的JH2模型克服了原始JH2模型在损伤演化的拉压不对称特性、非线性应变硬化行为、洛德角效应和体积行为等方面的不足,证明了本文所提改进JH2模型的预测精度和应用潜力.
基金Project supported by the National Natural Sciences Foundation of China (No. 10172022).
文摘The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.