The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy ...The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data.展开更多
基金The project supported by the National Natural Science Foundation of China(10272042)the Special Science Fund of the Doctoral Discipline of the Ministry of Education.China(20020532018)
文摘The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data.