The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief,post-earthquake reconstruction and scientific research. The seismic intensit...The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief,post-earthquake reconstruction and scientific research. The seismic intensity distribution map released by the Lushan earthquake field team of the China Earthquake Administration(CEA) five days after the strong earthquake(M7.0) occurred in Lushan County of Sichuan Ya’an City at 8:02 on April 20,2013 provides a scientific basis for emergency relief,economic loss assessment and post-earthquake reconstruction. In this paper,the means for blind estimation of macroscopic intensity,field estimation of macro intensity,and review of intensity,as well as corresponding problems are discussed in detail,and the intensity distribution characteristics of the Lushan '4.20' M7.0 earthquake and its influential factors are analyzed,providing a reference for future seismic intensity assessments.展开更多
The synthetic aperture radar (SAR) plays an important role in earthquake emergency response because of its all-time and all-weather imaging capabilities. On April 14, 2010, an Ms7.1 earthquake occurred in Yushu coun...The synthetic aperture radar (SAR) plays an important role in earthquake emergency response because of its all-time and all-weather imaging capabilities. On April 14, 2010, an Ms7.1 earthquake occurred in Yushu county, Qinghai province of China, causing a lot of buildings collapsed. In this paper, the building damage in Yushu city due to the earthquake was assessed quantitatively using high-resolution X-band airborne SAR image. The features of the buildings with different damage levels (collapsed, partial collapsed, non-collapsed) in the SAR image were analyzed first. Based on these building features, we interpreted the individual building damage in Yushu city block by block and got the numbers of the collapsed, partial collapsed and non-collapsed buildings separately for each block, referring to pre-earthquake QuickBird image when necessary. Let the damage index of individual collapsed, partial collapsed, non-collapsed building be 1, 0.5, 0 respectively, the remote sensing damage index of each block was then calculated through remote sensing damage index equation. Finally, the preliminary quantitative relationship between the remote sensing damage index interpreted from the SAR image and that interpreted from the optical image was built up. It can be concluded that a desirable damage assessment result can be derived from high-resolution airborne SAR imagery.展开更多
A new technique designed to help quantify the degree of damage to the landscape from one area to another shows a close relationship between population density and the degree of landscape damage. The technique establis...A new technique designed to help quantify the degree of damage to the landscape from one area to another shows a close relationship between population density and the degree of landscape damage. The technique establishes a scale of damage from 0 to 5 (zero = no damage; 5 = severe damage) using data from aerial photographs, land-use maps, and field data. The related formula allows one to compare the relative degree of damage across regions using a combination of an absolute index, a theoretical index, a relative index, and population density. Xing’an County is used to demonstrate the technique.展开更多
基金NSFC under Grant No.91315301-10 and Seismic Industry Research Special Fund under Grant No.201208019
文摘The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief,post-earthquake reconstruction and scientific research. The seismic intensity distribution map released by the Lushan earthquake field team of the China Earthquake Administration(CEA) five days after the strong earthquake(M7.0) occurred in Lushan County of Sichuan Ya’an City at 8:02 on April 20,2013 provides a scientific basis for emergency relief,economic loss assessment and post-earthquake reconstruction. In this paper,the means for blind estimation of macroscopic intensity,field estimation of macro intensity,and review of intensity,as well as corresponding problems are discussed in detail,and the intensity distribution characteristics of the Lushan '4.20' M7.0 earthquake and its influential factors are analyzed,providing a reference for future seismic intensity assessments.
基金supported by the Project "Study on the key techniques of remote sensing applied to earthquake emergency management" funded by Ministry of Science & Technology of China(No.2009DFA21610)
文摘The synthetic aperture radar (SAR) plays an important role in earthquake emergency response because of its all-time and all-weather imaging capabilities. On April 14, 2010, an Ms7.1 earthquake occurred in Yushu county, Qinghai province of China, causing a lot of buildings collapsed. In this paper, the building damage in Yushu city due to the earthquake was assessed quantitatively using high-resolution X-band airborne SAR image. The features of the buildings with different damage levels (collapsed, partial collapsed, non-collapsed) in the SAR image were analyzed first. Based on these building features, we interpreted the individual building damage in Yushu city block by block and got the numbers of the collapsed, partial collapsed and non-collapsed buildings separately for each block, referring to pre-earthquake QuickBird image when necessary. Let the damage index of individual collapsed, partial collapsed, non-collapsed building be 1, 0.5, 0 respectively, the remote sensing damage index of each block was then calculated through remote sensing damage index equation. Finally, the preliminary quantitative relationship between the remote sensing damage index interpreted from the SAR image and that interpreted from the optical image was built up. It can be concluded that a desirable damage assessment result can be derived from high-resolution airborne SAR imagery.
文摘A new technique designed to help quantify the degree of damage to the landscape from one area to another shows a close relationship between population density and the degree of landscape damage. The technique establishes a scale of damage from 0 to 5 (zero = no damage; 5 = severe damage) using data from aerial photographs, land-use maps, and field data. The related formula allows one to compare the relative degree of damage across regions using a combination of an absolute index, a theoretical index, a relative index, and population density. Xing’an County is used to demonstrate the technique.