期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于似然比框架的法庭说话人自动识别系统构建与验证 被引量:2
1
作者 张翠玲 丁盼 《中国人民公安大学学报(自然科学版)》 2022年第2期82-91,共10页
为了探究法庭说话人自动识别技术在司法实践中的应用价值,研究使用深度神经网络提取说话人身份向量,并构建了基于d-vector PLDA的法庭说话人自动识别系统,选用开源语音数据集VoxCeleb1和VoxCeleb2作为系统评测语料,在似然比框架下,利用... 为了探究法庭说话人自动识别技术在司法实践中的应用价值,研究使用深度神经网络提取说话人身份向量,并构建了基于d-vector PLDA的法庭说话人自动识别系统,选用开源语音数据集VoxCeleb1和VoxCeleb2作为系统评测语料,在似然比框架下,利用不同采样率的语音数据和不同规模的训练数据集进行了系统测试和性能验证实验。结果表明,基于d-vector PLDA模型的法庭说话人识别系统识别性能优良,在司法语音实践中具有良好的潜力和应用前景,而基于高采样率语音数据的训练测试和较大规模PLDA自适应训练数据集的系统识别效果更佳。 展开更多
关键词 法庭说话人自动识别 深度神经网络 似然比 d-vector plda
下载PDF
基于T矩阵归一化PLDA的说话人确认
2
作者 缑新科 王跃 《计算机与现代化》 2017年第10期53-56,共4页
利用i-vector/PLDA模型进行说话人确认时,对于不定时间的语音,由于将长度归一化后的i-vector转化到PLDA模型时,伴随着不确定性的扭曲和缩放,影响识别率。本文通过对全变量空间矩阵T的列向量执行归一化,代替在PLDA模型上对i-vector进行... 利用i-vector/PLDA模型进行说话人确认时,对于不定时间的语音,由于将长度归一化后的i-vector转化到PLDA模型时,伴随着不确定性的扭曲和缩放,影响识别率。本文通过对全变量空间矩阵T的列向量执行归一化,代替在PLDA模型上对i-vector进行长度归一化,避免因在i-vector上执行长度归一化,导致转移到PLDA模型上产生不良的扭曲。实验结果表明,该方法得到和长度归一化相似的效果,部分效果要优于长度归一化。 展开更多
关键词 i-vector/plda 长度归一化 T矩阵 高斯通用背景模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部