目的:探究核受体亚家族4A组成员1(nuclear receptor subfamily 4 group A member 1,Nr4a1)Nr4a1激动剂胞孢子酮B(cytosporone B,Csn-B)对小鼠噪声暴露后听力损失的治疗作用。方法:采用双氧水刺激HEI-OC1毛细胞系的方法构建氧化应激细胞...目的:探究核受体亚家族4A组成员1(nuclear receptor subfamily 4 group A member 1,Nr4a1)Nr4a1激动剂胞孢子酮B(cytosporone B,Csn-B)对小鼠噪声暴露后听力损失的治疗作用。方法:采用双氧水刺激HEI-OC1毛细胞系的方法构建氧化应激细胞模型;通过实时荧光定量PCR(quantitative real-time PCR,q PCR)检测细胞中Nr4a1的mRNA表达水平;分别通过细胞计数试剂盒(cell counting kit-8,CCK8)及流式细胞术的方法检测细胞活力和细胞凋亡水平以评估Csn-B预处理后经双氧水刺激的细胞状态。构建小鼠噪声性听力损失模型,运用qPCR和免疫荧光技术检测噪声暴露后Nr4a1在小鼠耳蜗中的表达;通过检测听性脑干反应(auditory brainstem response,ABR)评估噪声暴露后以及Csn-B连续治疗13 d后小鼠听力情况。结果:双氧水刺激后HEI-OC1毛细胞中Nr4a1表达上升,细胞活力显著下降,凋亡水平显著升高;Csn-B预处理HEI-OC1毛细胞经双氧水刺激,细胞活力显著高于对照组而凋亡水平则显著低于对照组。在体研究结果显示,噪声暴露后小鼠听力显著降低,Nr4a1在小鼠耳蜗中的表达水平显著升高。噪声暴露后经Csn-B治疗小鼠听力得到改善,主要表现为Click-ABR以及Tone Burst-ABR(4000、8000Hz处)阈值下降。结论:Nr4a1激动剂Csn-B增强内耳毛细胞对氧化应激损伤的抵御能力,部分改善噪声暴露后的小鼠听力。展开更多
Mangroves are special woody plant communities in the intertidal zone of tropical and subtropical coasts. They prove to be a natural microorganisms and new metabolites storage. In the study of mangrove endophytic fungi...Mangroves are special woody plant communities in the intertidal zone of tropical and subtropical coasts. They prove to be a natural microorganisms and new metabolites storage. In the study of mangrove endophytic fungi metabolites, four new compounds, Compounds 1, 2, 3 and 4, as well as a known octaketide, oytosporone B (5), are isolated from an endophytic fungus, Dothiorella sp., HTF3. They all show cytotoxic activities. The elucidation of these structures is mainly based on 1D/ 2D NMR and ESI-MS spectral analyses.展开更多
文摘Mangroves are special woody plant communities in the intertidal zone of tropical and subtropical coasts. They prove to be a natural microorganisms and new metabolites storage. In the study of mangrove endophytic fungi metabolites, four new compounds, Compounds 1, 2, 3 and 4, as well as a known octaketide, oytosporone B (5), are isolated from an endophytic fungus, Dothiorella sp., HTF3. They all show cytotoxic activities. The elucidation of these structures is mainly based on 1D/ 2D NMR and ESI-MS spectral analyses.