期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
圈的笛卡积的圈点连通度(英文) 被引量:3
1
作者 秦德金 田应智 孟吉翔 《新疆大学学报(自然科学版)》 CAS 北大核心 2017年第4期415-420,共6页
设G是一个点集为V(G),边集为E(G)的图.对于图G的点子集S,如果G-S不连通并且至少两个连通分支包含圈,则称S为一个圈点割.如果一个图有圈点割,称该图为圈可分离的.一个圈点可分离图G的最小圈点割的阶数被称为圈点连通度,记作κ_c(G).文章... 设G是一个点集为V(G),边集为E(G)的图.对于图G的点子集S,如果G-S不连通并且至少两个连通分支包含圈,则称S为一个圈点割.如果一个图有圈点割,称该图为圈可分离的.一个圈点可分离图G的最小圈点割的阶数被称为圈点连通度,记作κ_c(G).文章证明了κ_c(C_3□C_(n1)□Cn_2□···□C_(nk))=6k和κ_c(C_(n1)□C_(n2)□···C_(nk))=8k-8,其中对于i=1,2,···,k,Cni是一个长度大于等于4的圈. 展开更多
关键词 圈点割 圈点连通度 笛卡尔积
下载PDF
Super Cyclically Edge-connected Vertex-transitive Graphs of Girth at Least 5
2
作者 Jin Xin ZHOU Yan Tao LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第8期1569-1580,共12页
A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is called cyclically separable. We call a cyclically separable graph super cyclically edge-... A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is called cyclically separable. We call a cyclically separable graph super cyclically edge-connected, in short, super-λc, if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle. In [Zhang, Z., Wang, B.: Super cyclically edge-connected transitive graphs. J. Combin. Optim., 22, 549–562 (2011)], it is proved that a connected vertex-transitive graph is super-λc if G has minimum degree at least 4 and girth at least 6, and the authors also presented a class of nonsuper-λc graphs which have degree 4 and girth 5. In this paper, a characterization of k (k≥4)-regular vertex-transitive nonsuper-λc graphs of girth 5 is given. Using this, we classify all k (k≥4)-regular nonsuper-λc Cayley graphs of girth 5, and construct the first infinite family of nonsuper-λc vertex-transitive non-Cayley graphs. 展开更多
关键词 cyclic edge-cut cyclic edge-connectivity super cyclically edge-connected vertex-transit-ive graphs
原文传递
极小循环图的圈点连通度
3
作者 陈来焕 孟吉翔 +1 位作者 刘凤霞 田应智 《应用数学学报》 CSCD 北大核心 2019年第2期208-219,共12页
如果X-F中至少两个分支含圈,则称点集F为图X的一个圈点割.图X的所有圈点割的最小基数称为图x的圈点连通度,记为κ_c(X).在本文中,我们证明了极小循环图X=C(Z_n,S)在满足:(1)|S|≥2且对于a∈S有2a≡0(模n)或3α≡0(模n);或(2))|S|≥3且... 如果X-F中至少两个分支含圈,则称点集F为图X的一个圈点割.图X的所有圈点割的最小基数称为图x的圈点连通度,记为κ_c(X).在本文中,我们证明了极小循环图X=C(Z_n,S)在满足:(1)|S|≥2且对于a∈S有2a≡0(模n)或3α≡0(模n);或(2))|S|≥3且对任意的a∈S有2a■0(模n), 3a■0 (模n),则κ_c(X)=g(κ-2),其中g和κ(κ>2)分别为图X的围长和正则度. 展开更多
关键词 连通度 圈点割 圈点连通度 循环图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部