目前用于轨道路堤分析计算的参数多是通过三轴试验获得,而列车荷载经过时土单元应力路径与循环三轴试验加载路径的显著差异可能导致预测失真而引发工程问题。针对某城市轨道进行了三维计算,并分析了移动列车荷载下土单元应力幅值、循环...目前用于轨道路堤分析计算的参数多是通过三轴试验获得,而列车荷载经过时土单元应力路径与循环三轴试验加载路径的显著差异可能导致预测失真而引发工程问题。针对某城市轨道进行了三维计算,并分析了移动列车荷载下土单元应力幅值、循环周数、主应力轴旋转的分布规律。在该基础上,采用空心圆柱循环扭剪试验对该复杂应力路径进行了模拟,研究了饱和软黏土的孔压及变形累积特性。结果表明,列车荷载经过时地基土单元大主应力将在(-90°,90°)内发生旋转;该主应力轴旋转将显著促进软黏土孔压和应变的累积,竖向应力幅值为15 k Pa时,循环扭剪试验产生的孔压值比循环三轴试验高77%,累积应变增大了近50%;随着循环应力水平提高,二者累积孔压及累积应变的差值还会进一步增大,甚至出现循环三轴下仅产生较小应变而循环扭剪下已破坏的本质性差异。展开更多
The principal stress rotation is one of the most important features of the stress state in a seabed subjected to wave loading. Most prior investigations focused their attention on the cyclic behaviour of soil deposits...The principal stress rotation is one of the most important features of the stress state in a seabed subjected to wave loading. Most prior investigations focused their attention on the cyclic behaviour of soil deposits under the circular rotation stress path based on the analytical solutions for a seabed of infinite thickness. In this paper, the nonstandard elliptical, i.e., non-circular, rotation stress path is shown to be a more common state in the soil sediments of a finite seabed with an alternating changeover in stress due to a travelling regular wave. Then an experimental investigation in a hollow cylinder triaxial-torsional apparatus is conducted into the effect of the nonstandard elliptical stress path on the cyclic strength. A special attention is placed on the difference between the circular rotation stress path and the elliptical rotation stress path. The results and observations show that the shear characteristics for the circular rotation stress path in the literature are not applicable for analyzing the cyclic strength of sand in a finite seabed, and also indicate that due to the influence of three parameters about the size and the shape of a nonstandard ellipse, the cyclic strength under a nonstandard elliptical rotation stress path is evidently more complex and diversified as compared with that under a circular rotation stress path. Especially the influence of the initial phase difference on the cyclic strength is significant.展开更多
Comprehensive tests on Hangzhou intact soft clay were performed, which were used to obtain the soils' critical response to undrained dynamic stress paths under different combinations of principal stress orientatio...Comprehensive tests on Hangzhou intact soft clay were performed, which were used to obtain the soils' critical response to undrained dynamic stress paths under different combinations of principal stress orientation. The different combinations included cyclic principal stress rotation (CPSR for short), cyclic shear with abrupt change of principal stress orientation (CAPSO for short) and cyclic shear with fixed principal stress orientation (CFPSO for short). On one side, under all these stress paths, samples have obvious strain inflection points and shear bands, and the excess pore water pressure is far from the level of initial effective confining pressure at failure. Stress paths of major principal stress orientation (α) alternating from negative and positive have quite different influence on soil's properties with those in which α is kept negative or positive. On the other side, due to the soil's strongly initial anisotropy, samples under double-amplitudes CPSR and CAPSO (or single-amplitude CPSR and CFPSO) have similar properties on dynamic shear strength and pore water pressure development tendency when α is kept within ±45°, while have quite different properties when α oversteps ±45°.展开更多
The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were peffo...The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency.展开更多
Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large...Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large-scale hollow cylinder samples reveal that the cyclic rotation of the principal stress direction results in significant variations of strain components(ε,ε,εand γ) with periodic characteristics despite the deviatoric stress being constant during tests.This oscillation can be related to the corresponding variations in the stress components and the anisotropic fabric that rotate continuously along the principal stress direction.Sand under rotation appears to develop a plastic strain.Similar trends are observed for reinforced sand,but the shear interaction,the interlocking between particles and reinforcement layer,and the confinement result in significant reductions in the induced strains and associated irrecoverable plastic strains.Most of the strains occur in the first cycle,and as the number of cycles increases,the presence of strains becomes very small,which is almost insignificant.This indicates that the soil has reached anisotropic critical state(ACS),where a stable structure is formed after continuous orientation,realignment and rearrangement of the particles accompanied with increasing cyclic rotation.Rotation in the range of 60°-135° produces more induced strains even in the presence of the reinforcement,when compared with other ranges.This relates to the extension mode of the test in this range in which σ>σand to the relative approach between the mobilized plane and the weakest horizontal plane.Reinforcement results in an increase in shear modulus while it appears to have no effect on the damping ratio.Continuous cycles of rotation result in an increase in shear modulus and lower damping ratio due to the densification that causes a decrease in shear strain and less dissipation of energy.展开更多
文摘目前用于轨道路堤分析计算的参数多是通过三轴试验获得,而列车荷载经过时土单元应力路径与循环三轴试验加载路径的显著差异可能导致预测失真而引发工程问题。针对某城市轨道进行了三维计算,并分析了移动列车荷载下土单元应力幅值、循环周数、主应力轴旋转的分布规律。在该基础上,采用空心圆柱循环扭剪试验对该复杂应力路径进行了模拟,研究了饱和软黏土的孔压及变形累积特性。结果表明,列车荷载经过时地基土单元大主应力将在(-90°,90°)内发生旋转;该主应力轴旋转将显著促进软黏土孔压和应变的累积,竖向应力幅值为15 k Pa时,循环扭剪试验产生的孔压值比循环三轴试验高77%,累积应变增大了近50%;随着循环应力水平提高,二者累积孔压及累积应变的差值还会进一步增大,甚至出现循环三轴下仅产生较小应变而循环扭剪下已破坏的本质性差异。
基金Project supported by the Natural Science Foundation of China(Grant Nos.51639002,51209033)the Specialized Re-search Fund for the Doctoral Program of Higher Education(Grant No.20120041130002)
文摘The principal stress rotation is one of the most important features of the stress state in a seabed subjected to wave loading. Most prior investigations focused their attention on the cyclic behaviour of soil deposits under the circular rotation stress path based on the analytical solutions for a seabed of infinite thickness. In this paper, the nonstandard elliptical, i.e., non-circular, rotation stress path is shown to be a more common state in the soil sediments of a finite seabed with an alternating changeover in stress due to a travelling regular wave. Then an experimental investigation in a hollow cylinder triaxial-torsional apparatus is conducted into the effect of the nonstandard elliptical stress path on the cyclic strength. A special attention is placed on the difference between the circular rotation stress path and the elliptical rotation stress path. The results and observations show that the shear characteristics for the circular rotation stress path in the literature are not applicable for analyzing the cyclic strength of sand in a finite seabed, and also indicate that due to the influence of three parameters about the size and the shape of a nonstandard ellipse, the cyclic strength under a nonstandard elliptical rotation stress path is evidently more complex and diversified as compared with that under a circular rotation stress path. Especially the influence of the initial phase difference on the cyclic strength is significant.
基金Projects(50308025 50639010) supported by the National Natural Science Foundation of China
文摘Comprehensive tests on Hangzhou intact soft clay were performed, which were used to obtain the soils' critical response to undrained dynamic stress paths under different combinations of principal stress orientation. The different combinations included cyclic principal stress rotation (CPSR for short), cyclic shear with abrupt change of principal stress orientation (CAPSO for short) and cyclic shear with fixed principal stress orientation (CFPSO for short). On one side, under all these stress paths, samples have obvious strain inflection points and shear bands, and the excess pore water pressure is far from the level of initial effective confining pressure at failure. Stress paths of major principal stress orientation (α) alternating from negative and positive have quite different influence on soil's properties with those in which α is kept negative or positive. On the other side, due to the soil's strongly initial anisotropy, samples under double-amplitudes CPSR and CAPSO (or single-amplitude CPSR and CFPSO) have similar properties on dynamic shear strength and pore water pressure development tendency when α is kept within ±45°, while have quite different properties when α oversteps ±45°.
基金supported by The Key Project of National Natural Science Foundation of China(Grant Nos.50639010 and 50909039)
文摘The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency.
文摘Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large-scale hollow cylinder samples reveal that the cyclic rotation of the principal stress direction results in significant variations of strain components(ε,ε,εand γ) with periodic characteristics despite the deviatoric stress being constant during tests.This oscillation can be related to the corresponding variations in the stress components and the anisotropic fabric that rotate continuously along the principal stress direction.Sand under rotation appears to develop a plastic strain.Similar trends are observed for reinforced sand,but the shear interaction,the interlocking between particles and reinforcement layer,and the confinement result in significant reductions in the induced strains and associated irrecoverable plastic strains.Most of the strains occur in the first cycle,and as the number of cycles increases,the presence of strains becomes very small,which is almost insignificant.This indicates that the soil has reached anisotropic critical state(ACS),where a stable structure is formed after continuous orientation,realignment and rearrangement of the particles accompanied with increasing cyclic rotation.Rotation in the range of 60°-135° produces more induced strains even in the presence of the reinforcement,when compared with other ranges.This relates to the extension mode of the test in this range in which σ>σand to the relative approach between the mobilized plane and the weakest horizontal plane.Reinforcement results in an increase in shear modulus while it appears to have no effect on the damping ratio.Continuous cycles of rotation result in an increase in shear modulus and lower damping ratio due to the densification that causes a decrease in shear strain and less dissipation of energy.