Several technical problems of numerical method in TLM procedures arediscussed.The bandwidth of single mode in four kinds of dielectric slab loaded rect-angular waveguides is investigated,and the optimum bandwidth whic...Several technical problems of numerical method in TLM procedures arediscussed.The bandwidth of single mode in four kinds of dielectric slab loaded rect-angular waveguides is investigated,and the optimum bandwidth which is related tothe dimensions and dielectric constants is obtained.These results are useful to the de-sign of dielectric slab loaded rectangular waveguide.展开更多
The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space...The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space turbine blisk featuring complex deformation of blades and high eigenfrequency(>40kHz)is performed.The simulations are based on unsteady Reynolds Averaged Navier Stokes computations linearized in the frequency domain and consist in the superposition of an unsteady linear(in time)pressure field,generated by a harmonic perturbation,upon a steady nonlinear(in space)flow.The aerodynamic damping coefficient is calculated over a range of nodal diameters,and the blades are predicted aeroelastically stable.However,violent changes occur and are rather critical since sudden and large deviations in stability appear.In that context,the nature of the waves propagating from the cascade are evaluated.Such an approach provides fundamental knowledge about the perturbations which can either propagate to the far-field(cut-on mode)or decay(cut-off mode).It is expected that the ability of the flow to damp or to amplify the blade motion is strongly affected by the way unsteady perturbations are transferred from the cascade to the far-field.The nature of the waves are first assessed from the aforementioned linearized results,then they are evaluated analytically and finally compared.A good agreement is found despite the strong assumptions of the analytical model.The results show a clear correlation between the cut-on/cut-off conditions and stability.The least stable configuration corresponds to cut-off mode at the inlet and no wave at the outlet.Without outgoing waves from the cascade,the blade is prone to be less stable:the energy from the blades vibration is necessarily dissipated or sent out by the cascade.展开更多
In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densi...In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.展开更多
Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
文摘Several technical problems of numerical method in TLM procedures arediscussed.The bandwidth of single mode in four kinds of dielectric slab loaded rect-angular waveguides is investigated,and the optimum bandwidth which is related tothe dimensions and dielectric constants is obtained.These results are useful to the de-sign of dielectric slab loaded rectangular waveguide.
基金the Centre National d'Etudes Spatiales (CNES) and Snecma for their financial supportthe Centre Informatique National de l'Enseignement Supérieur (CINES) for the computational resources,and the Agence Nationale de la Recherche(ANR) for sponsoring the project ANR-08-2009 CapCAO (parametrization-aided optimized aeroelastic design)
文摘The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space turbine blisk featuring complex deformation of blades and high eigenfrequency(>40kHz)is performed.The simulations are based on unsteady Reynolds Averaged Navier Stokes computations linearized in the frequency domain and consist in the superposition of an unsteady linear(in time)pressure field,generated by a harmonic perturbation,upon a steady nonlinear(in space)flow.The aerodynamic damping coefficient is calculated over a range of nodal diameters,and the blades are predicted aeroelastically stable.However,violent changes occur and are rather critical since sudden and large deviations in stability appear.In that context,the nature of the waves propagating from the cascade are evaluated.Such an approach provides fundamental knowledge about the perturbations which can either propagate to the far-field(cut-on mode)or decay(cut-off mode).It is expected that the ability of the flow to damp or to amplify the blade motion is strongly affected by the way unsteady perturbations are transferred from the cascade to the far-field.The nature of the waves are first assessed from the aforementioned linearized results,then they are evaluated analytically and finally compared.A good agreement is found despite the strong assumptions of the analytical model.The results show a clear correlation between the cut-on/cut-off conditions and stability.The least stable configuration corresponds to cut-off mode at the inlet and no wave at the outlet.Without outgoing waves from the cascade,the blade is prone to be less stable:the energy from the blades vibration is necessarily dissipated or sent out by the cascade.
文摘In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.