Due to the excellent self-centering and load-carrying capability,curvic couplings have been widely used in advanced aero-engine rotors.However,curvic tooth surface errors lead to poor assembly precision.Traditional ph...Due to the excellent self-centering and load-carrying capability,curvic couplings have been widely used in advanced aero-engine rotors.However,curvic tooth surface errors lead to poor assembly precision.Traditional physical-master-gauge-based indirect tooth surface error measurement and circumferential assembly angle optimization methods have the disadvantages of high cost and weak generality.The unknown tooth surface fitting mechanism is a big barrier to assembly precision prediction and improvement.Therefore,this work puts forward a data-driven assembly simulation and optimization approach for aero-engine rotors connected by curvic couplings.The origin of curvic tooth surface error is deeply investigated.Using 5-axis sweep scan method,a large amount of high-precision curvic tooth surface data are acquired efficiently.Based on geometric models of parts,the fitting mechanism of curvic couplings is uncovered for assembly precision simulation and prediction.A circumferential assembly angle optimization model is developed to decrease axial and radial assembly runouts.Experimental results show that the assembly precision can be predicted accurately and improved dramatically.By uncovering the essential principle of the assembly precision formation and proposing circumferential assembly angle optimization model,this work is meaningful for assembly quality,efficiency and economy improvement of multistage aero-engine rotors connected by curvic couplings.展开更多
This paper studied the contact stresses in curvic attachments.The principal purpose of this research is to employ a method of alleviating the fluctuating hoop stresses which can be considered to be a major contributio...This paper studied the contact stresses in curvic attachments.The principal purpose of this research is to employ a method of alleviating the fluctuating hoop stresses which can be considered to be a major contribution to fatigue failure in curvic attachments.This method entails novel precision geometry of the contacting flat on curvic which is a tactic to get appropriate arc heights in in-plane direction as well as vary radius in out-of-plane direction.The dimensional finite elements in both directions were analyzed.These analysis results indicated that significant reduction in fluctuating hoop stresses can be achieved by the proposed method,provided that the precision geometry is controlled sufficiently precisely.展开更多
基金co-supported by the National Basic Research Project(Nos.J2022-VII-0001-0043 and 2017-VII-0010-0104)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(No.72231008)。
文摘Due to the excellent self-centering and load-carrying capability,curvic couplings have been widely used in advanced aero-engine rotors.However,curvic tooth surface errors lead to poor assembly precision.Traditional physical-master-gauge-based indirect tooth surface error measurement and circumferential assembly angle optimization methods have the disadvantages of high cost and weak generality.The unknown tooth surface fitting mechanism is a big barrier to assembly precision prediction and improvement.Therefore,this work puts forward a data-driven assembly simulation and optimization approach for aero-engine rotors connected by curvic couplings.The origin of curvic tooth surface error is deeply investigated.Using 5-axis sweep scan method,a large amount of high-precision curvic tooth surface data are acquired efficiently.Based on geometric models of parts,the fitting mechanism of curvic couplings is uncovered for assembly precision simulation and prediction.A circumferential assembly angle optimization model is developed to decrease axial and radial assembly runouts.Experimental results show that the assembly precision can be predicted accurately and improved dramatically.By uncovering the essential principle of the assembly precision formation and proposing circumferential assembly angle optimization model,this work is meaningful for assembly quality,efficiency and economy improvement of multistage aero-engine rotors connected by curvic couplings.
基金Sponsored by the National Basic Research Program of China (Grant No.2007CB707705 and 2007CB707706)
文摘This paper studied the contact stresses in curvic attachments.The principal purpose of this research is to employ a method of alleviating the fluctuating hoop stresses which can be considered to be a major contribution to fatigue failure in curvic attachments.This method entails novel precision geometry of the contacting flat on curvic which is a tactic to get appropriate arc heights in in-plane direction as well as vary radius in out-of-plane direction.The dimensional finite elements in both directions were analyzed.These analysis results indicated that significant reduction in fluctuating hoop stresses can be achieved by the proposed method,provided that the precision geometry is controlled sufficiently precisely.