Suspended vegetation in rivers,lakes,reservoirs and canals can change flow structure,which will in turn affect the sediment transport and cause the variation of water ecological environment.In order to study the chara...Suspended vegetation in rivers,lakes,reservoirs and canals can change flow structure,which will in turn affect the sediment transport and cause the variation of water ecological environment.In order to study the characteristics of bend flow through suspended vegetation,three-dimensional numerical simulations are carried out by using the multi-relaxation-time lattice Boltzmann method(MRT-LBM).The drag force induced by vegetation is added in the velocity correction in the equilibrium distribution and a hybrid format combined bounce and specular reflection scheme is applied in the solid-fluid boundaries.After the validation of this model,six cases are designed to conduct the numerical simulations according to the root depth and the arrangement of vegetation.The simulated results show that the suspended vegetation can redistribute the flow structure in curved open channels.After the arrangement of suspended vegetation,the main flow moves to the side without vegetation,and the distribution of velocity tends to be balanced when vegetation is arranged on the entire cross section,the range of circulating current is reduced from the whole cross section to the local position without vegetation,however,the circulating current can still exist in the curve where the suspended vegetation enters less than half of the water depth.In addition,it can also be concluded that the suspended vegetation can affect the lateral gradient of flow velocity,and the bed shear stress in the curved channel.展开更多
In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momen...In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momentum and heat conservation equations with appropriate boundary conditions for compliant wails. Sophisticated correlations are employed for thermal conductivity of the nanoparticles. The nonlinear boundary value problem is normalized with appropriate variables and closed-form solutions are derived for stream function, pressure gradient and temperature profile. A detailed study is performed for the influence of various nanoparticle geometries (bricks, cylinders and platelets). With greater curvature value, pressure gradient is enhanced for various nanoparticle geometries. Temperature is dramatically modified with nanoparticle geometry and greater thermal conductivity is achieved with brick shaped nanoparticles in the fluid.展开更多
综合考虑风、流致漂移量等影响因素,基于弯曲航道的地理环境特点和船舶行为特征,构建弯曲航道通航能力计算模型。运用Visual Studio 2010开发长江江苏段弯曲航道通航能力计算软件,可快速实现不同环境和代表船型条件下弯曲航道上、下行...综合考虑风、流致漂移量等影响因素,基于弯曲航道的地理环境特点和船舶行为特征,构建弯曲航道通航能力计算模型。运用Visual Studio 2010开发长江江苏段弯曲航道通航能力计算软件,可快速实现不同环境和代表船型条件下弯曲航道上、下行通航能力的计算与分析,数值实验结果验证计算模型和软件的有效性与可信度。展开更多
The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions,such as the presence of a heat source/sink and slip effects in channels with a curvature...The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions,such as the presence of a heat source/sink and slip effects in channels with a curvature.This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology.A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations,which are then integrated numerically.The investigation reveals that nanofluids have valuable thermal capabilitises.展开更多
基金Project supported by the National Natural Science Foundationof China (Grant No. 11861003)supported by the Natural Science Foundation of Ningxia (Grant Nos.2023AAC02049,2021AAC03208)+2 种基金the Support Plan for Innovation Team of North Minzu University,China (Grant No.2022PT_S02)the Support Plan for Leading Personnel of State Ethnic Affairs Commission,China (Grant No.113114000706)the Leading Academic Discipline Project of North Minzu University.
文摘Suspended vegetation in rivers,lakes,reservoirs and canals can change flow structure,which will in turn affect the sediment transport and cause the variation of water ecological environment.In order to study the characteristics of bend flow through suspended vegetation,three-dimensional numerical simulations are carried out by using the multi-relaxation-time lattice Boltzmann method(MRT-LBM).The drag force induced by vegetation is added in the velocity correction in the equilibrium distribution and a hybrid format combined bounce and specular reflection scheme is applied in the solid-fluid boundaries.After the validation of this model,six cases are designed to conduct the numerical simulations according to the root depth and the arrangement of vegetation.The simulated results show that the suspended vegetation can redistribute the flow structure in curved open channels.After the arrangement of suspended vegetation,the main flow moves to the side without vegetation,and the distribution of velocity tends to be balanced when vegetation is arranged on the entire cross section,the range of circulating current is reduced from the whole cross section to the local position without vegetation,however,the circulating current can still exist in the curve where the suspended vegetation enters less than half of the water depth.In addition,it can also be concluded that the suspended vegetation can affect the lateral gradient of flow velocity,and the bed shear stress in the curved channel.
文摘In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momentum and heat conservation equations with appropriate boundary conditions for compliant wails. Sophisticated correlations are employed for thermal conductivity of the nanoparticles. The nonlinear boundary value problem is normalized with appropriate variables and closed-form solutions are derived for stream function, pressure gradient and temperature profile. A detailed study is performed for the influence of various nanoparticle geometries (bricks, cylinders and platelets). With greater curvature value, pressure gradient is enhanced for various nanoparticle geometries. Temperature is dramatically modified with nanoparticle geometry and greater thermal conductivity is achieved with brick shaped nanoparticles in the fluid.
文摘综合考虑风、流致漂移量等影响因素,基于弯曲航道的地理环境特点和船舶行为特征,构建弯曲航道通航能力计算模型。运用Visual Studio 2010开发长江江苏段弯曲航道通航能力计算软件,可快速实现不同环境和代表船型条件下弯曲航道上、下行通航能力的计算与分析,数值实验结果验证计算模型和软件的有效性与可信度。
文摘The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions,such as the presence of a heat source/sink and slip effects in channels with a curvature.This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology.A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations,which are then integrated numerically.The investigation reveals that nanofluids have valuable thermal capabilitises.