Let Mn be a closed submanifold isometrically immersed in a unit sphere Sn . Denote by R, H and S, the normalized +p scalar curvature, the mean curvature, and the square of the length of the second fundamental form of ...Let Mn be a closed submanifold isometrically immersed in a unit sphere Sn . Denote by R, H and S, the normalized +p scalar curvature, the mean curvature, and the square of the length of the second fundamental form of Mn, respectively. Suppose R is constant and ≥1. We study the pinching problem on S and prove a rigidity theorem for Mn immersed in Sn +pwith parallel nor- malized mean curvature vector field. When n≥8 or, n=7 and p≤2, the pinching constant is best.展开更多
In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If the...In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).展开更多
Let M^n be a totally real submanifold in a complex projective space CP^(n+p).In this paper,we study the position of the parallel umbilical normal vector field of M^n in the normal bundle.By choosing a suitable frame f...Let M^n be a totally real submanifold in a complex projective space CP^(n+p).In this paper,we study the position of the parallel umbilical normal vector field of M^n in the normal bundle.By choosing a suitable frame field,we obtain a pinching theorem,in the case p>0, for the square of the length of the second fundamental form of a totally real pseudo-umbilical submanifold with parallel mean curvature vector.展开更多
We bring in Landau-Lifshitz-Bloch equation on m-dimensional closed Riemannian manifold and prove that it admits a unique local solution. When m ≥ 3 and the initial data in L^∞-norm is sufficiently small, the solutio...We bring in Landau-Lifshitz-Bloch equation on m-dimensional closed Riemannian manifold and prove that it admits a unique local solution. When m ≥ 3 and the initial data in L^∞-norm is sufficiently small, the solution can be extended globally. Moreover, for m = 2, we can prove that the unique solution is global without assuming small initial data.展开更多
基金Project supported by the Stress Supporting Subject Foundation of Zhejiang Province, China
文摘Let Mn be a closed submanifold isometrically immersed in a unit sphere Sn . Denote by R, H and S, the normalized +p scalar curvature, the mean curvature, and the square of the length of the second fundamental form of Mn, respectively. Suppose R is constant and ≥1. We study the pinching problem on S and prove a rigidity theorem for Mn immersed in Sn +pwith parallel nor- malized mean curvature vector field. When n≥8 or, n=7 and p≤2, the pinching constant is best.
文摘In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).
基金Foundation item: the Natural Science Foundation of Anhui Educational Committee (No. KJ2008A05ZC) the Younger Teachers of Anhui Normal University (No. 2005xqn01).
文摘Let M^n be a totally real submanifold in a complex projective space CP^(n+p).In this paper,we study the position of the parallel umbilical normal vector field of M^n in the normal bundle.By choosing a suitable frame field,we obtain a pinching theorem,in the case p>0, for the square of the length of the second fundamental form of a totally real pseudo-umbilical submanifold with parallel mean curvature vector.
文摘We bring in Landau-Lifshitz-Bloch equation on m-dimensional closed Riemannian manifold and prove that it admits a unique local solution. When m ≥ 3 and the initial data in L^∞-norm is sufficiently small, the solution can be extended globally. Moreover, for m = 2, we can prove that the unique solution is global without assuming small initial data.