基于0.5μm BCD工艺,设计了一种用于低边电流检测的可编程增益放大器(Programmable Gain Amplifier,PGA)。采用了电流模闭环可编程增益放大器结构,将传统电压模反馈电阻网络对采样电路的漏电流影响减小到纳安级别。设计了一种全差分高...基于0.5μm BCD工艺,设计了一种用于低边电流检测的可编程增益放大器(Programmable Gain Amplifier,PGA)。采用了电流模闭环可编程增益放大器结构,将传统电压模反馈电阻网络对采样电路的漏电流影响减小到纳安级别。设计了一种全差分高精度可变跨导放大器,给PGA提供了更加精准的可变增益。仿真结果表明,PGA放大倍数为4时,测量误差为0.2%,PGA放大倍数为256时,测量误差为3.11%,总谐波失真小于0.021%,芯片面积为1.5 mm×1.5 mm。展开更多
One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltag...One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.展开更多
A novel high CMRR current output stage (COS) with QFG is presented in this paper. A novel common mode feedback (CMFB) is used to reject the common mode signal in order to achieve high CMRR. The common mode signal is o...A novel high CMRR current output stage (COS) with QFG is presented in this paper. A novel common mode feedback (CMFB) is used to reject the common mode signal in order to achieve high CMRR. The common mode signal is omitted by the technique of adding the main signal and its opposite polarity one. 112 dB of CMRR is obtained in 0.35 μm CMOS technology with ±0.75 v supply voltage and only 182μw power dissipation which shows good improvement compared to the other work in the literature.展开更多
文摘One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.
文摘A novel high CMRR current output stage (COS) with QFG is presented in this paper. A novel common mode feedback (CMFB) is used to reject the common mode signal in order to achieve high CMRR. The common mode signal is omitted by the technique of adding the main signal and its opposite polarity one. 112 dB of CMRR is obtained in 0.35 μm CMOS technology with ±0.75 v supply voltage and only 182μw power dissipation which shows good improvement compared to the other work in the literature.