During the design and construction of the deepwater offshore basin, its current generation system is considered to be one of the key technologies. In this article, the state-of-the-art deepwater offshore basin at Shan...During the design and construction of the deepwater offshore basin, its current generation system is considered to be one of the key technologies. In this article, the state-of-the-art deepwater offshore basin at Shanghai Jiaotong University was examined as a case study. Different 3-D numerical models of the current generation system were developed and calculated. The uniformity of flow field in the basin, such as horizontal and vertical current velocity profiles, were calculated in detail. Besides, a 1 : 10 scaled model test was also carried out. The current velocities at different locations in the basin were measured and compared with the calculated results. It is concluded that satisfactory agreement can be resulted between the numerical simulation and model test. In addition, it is suggested that transition sections and turning vanes need to be set in inflow and outflow culverts to improve the uniformity of flow field in the basin. And the hydraulic performance of the deepwater current generation system can meet the requirements of model tests in deep water.展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods ...The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods have been used and applied to determine the optimal allocation and sizing of the PV to be installed as DGs (ranging from 250 kW up to 3 MW). The first one is to determine the location according to the maximal power losses reduction over the feeder. The second one is by using the Harmony Search Algorithm which is claimed to be a powerful technique for optimal allocation of PV systems. The results of the two techniques were compared and found to be nearly closed. Furthermore, investigation on the effects on the feeder in terms of voltage levels, power factor readings, and short circuit current levels has been done. All calculations and simulations are conducted by using the MATLAB Simulation Program. Some field calculations and observations have been expended in order to substantiate the research findings and validation.展开更多
The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristi...The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.展开更多
This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new ...This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform.展开更多
在分析我国潮流能利用现状、潮流能发电特点和潮流能实验水池特点的基础上,设计了结构简单、易于控制的拖曳式潮流能模拟系统。实验系统主要由拖曳和控制两部分组成,控制部分采用Lab V IEW、O P C与P LC无线连接技术。其中介绍了整个系...在分析我国潮流能利用现状、潮流能发电特点和潮流能实验水池特点的基础上,设计了结构简单、易于控制的拖曳式潮流能模拟系统。实验系统主要由拖曳和控制两部分组成,控制部分采用Lab V IEW、O P C与P LC无线连接技术。其中介绍了整个系统的设计过程,最后进行了系统工作性能的验证,证明了Lab V IEW O P C与P LC无线连接的稳定、可靠,系统工作良好,实现了整个系统的流程化管理和监控,为后续的潮流能发电相关研究奠定了基础。展开更多
基金supported by the Key Fundamental Research Project of Science and Technology Commission of Shanghai Municipality (Grant No. 05DJ14001)
文摘During the design and construction of the deepwater offshore basin, its current generation system is considered to be one of the key technologies. In this article, the state-of-the-art deepwater offshore basin at Shanghai Jiaotong University was examined as a case study. Different 3-D numerical models of the current generation system were developed and calculated. The uniformity of flow field in the basin, such as horizontal and vertical current velocity profiles, were calculated in detail. Besides, a 1 : 10 scaled model test was also carried out. The current velocities at different locations in the basin were measured and compared with the calculated results. It is concluded that satisfactory agreement can be resulted between the numerical simulation and model test. In addition, it is suggested that transition sections and turning vanes need to be set in inflow and outflow culverts to improve the uniformity of flow field in the basin. And the hydraulic performance of the deepwater current generation system can meet the requirements of model tests in deep water.
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods have been used and applied to determine the optimal allocation and sizing of the PV to be installed as DGs (ranging from 250 kW up to 3 MW). The first one is to determine the location according to the maximal power losses reduction over the feeder. The second one is by using the Harmony Search Algorithm which is claimed to be a powerful technique for optimal allocation of PV systems. The results of the two techniques were compared and found to be nearly closed. Furthermore, investigation on the effects on the feeder in terms of voltage levels, power factor readings, and short circuit current levels has been done. All calculations and simulations are conducted by using the MATLAB Simulation Program. Some field calculations and observations have been expended in order to substantiate the research findings and validation.
文摘The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.
基金supported by the University of Sharjah (No. 20020403142 and No. 21020403178)。
文摘This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform.
文摘在分析我国潮流能利用现状、潮流能发电特点和潮流能实验水池特点的基础上,设计了结构简单、易于控制的拖曳式潮流能模拟系统。实验系统主要由拖曳和控制两部分组成,控制部分采用Lab V IEW、O P C与P LC无线连接技术。其中介绍了整个系统的设计过程,最后进行了系统工作性能的验证,证明了Lab V IEW O P C与P LC无线连接的稳定、可靠,系统工作良好,实现了整个系统的流程化管理和监控,为后续的潮流能发电相关研究奠定了基础。