Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multi...Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.展开更多
Wild rice species is an important source of useful genes for cultivated rice improvement Some accessions of Oryza eichingeri (In = 24, CC) from Africa confer strong resistance to brown planthopper (BPH), whitebacked p...Wild rice species is an important source of useful genes for cultivated rice improvement Some accessions of Oryza eichingeri (In = 24, CC) from Africa confer strong resistance to brown planthopper (BPH), whitebacked planthopper (WBPH) and bacterial blight (KB). In the present study, restriction fragments length polymorphism (RFLP) and simple sequence repeats (SSR) analysis were performed on disomic backcross plants between Oryza saliva (2n =24, AA) and O. eichingeri in order to identify the presence of O, eichingeri segments and further to localize BPH-resistant gene. In the introgression lines, 1-6 O. eichingeri segments were detected on rice chromosomes 1, 2, 6, or/and 10. The dominant BPH resistant gene, tentatively named Bphl3(t), was mapped to chromosome 2, being 6.1 and 5.5 cM away from two microsatellite markers RM240 and RM250, respectively. The transfer and localization of this gene from O. eichingeri will contribute to the improvement of BPH resistance in cultivated rice.展开更多
基金Supported by the Project of Conservation and Utilization of Agricultural Wild Plants of the Ministry of Agriculture of China and a Grant from High- Tech Research and Development (863) Program of China (2006AA100101 ), and the National Natural Science Foundation of China (30270803). Publication of this paper is supported by the National Natural Science Foundation of China (30624808).
文摘Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.
文摘Wild rice species is an important source of useful genes for cultivated rice improvement Some accessions of Oryza eichingeri (In = 24, CC) from Africa confer strong resistance to brown planthopper (BPH), whitebacked planthopper (WBPH) and bacterial blight (KB). In the present study, restriction fragments length polymorphism (RFLP) and simple sequence repeats (SSR) analysis were performed on disomic backcross plants between Oryza saliva (2n =24, AA) and O. eichingeri in order to identify the presence of O, eichingeri segments and further to localize BPH-resistant gene. In the introgression lines, 1-6 O. eichingeri segments were detected on rice chromosomes 1, 2, 6, or/and 10. The dominant BPH resistant gene, tentatively named Bphl3(t), was mapped to chromosome 2, being 6.1 and 5.5 cM away from two microsatellite markers RM240 and RM250, respectively. The transfer and localization of this gene from O. eichingeri will contribute to the improvement of BPH resistance in cultivated rice.