Herein,we report the synthesis of Zn_(0.7)Mg_(0.3)Nd_(x)Fe_(2-x)O_(4)(where,x=0,0,0,01,0,02)ferrite nanoparticles by employing the sol-gel auto-combustion technique.The X-ray diffraction(XRD)pattern suggests the forma...Herein,we report the synthesis of Zn_(0.7)Mg_(0.3)Nd_(x)Fe_(2-x)O_(4)(where,x=0,0,0,01,0,02)ferrite nanoparticles by employing the sol-gel auto-combustion technique.The X-ray diffraction(XRD)pattern suggests the formation of a pure cubic structure,without any impurity phase,with an Fd3m space group at room temperature.With increasing doping amount,the crystallite size is reported as 35-41 nm,while the lattice parameters rise from 0.8381 to 0.8395 nm.Field emission scanning electron microscopy(FESEM)images show the formation of spherical grains with agglomerated morphology in all the samples,with grain sizes ranging from 49 to 103 nm.Energy dispersive X-ray spectroscopy(EDX)and elemental mapping investigation confirm the chemical purity of all the samples.Fourier transform infrared(FTIR)analysis shows the presence of two prominent peaks around 440 and 560 cm^(-1)that correspond to the octahedral and tetrahedral positions.In addition,the existence of five Raman active vibratio nal modes in all produced specimens again confirms the structural purity of all the samples.The M-H curve shows that saturation magnetization(M_(s))first increases from 14.98 to 28.22 emu/g and then decreases to 18.98emu/g with increasing doping amount.This is due to the A-B type super-exchange interaction for the synthesized samples.The variation in coercivity(H_(c))and magnetic anisotropy(K_(1))suggest the thermal stability of all the samples and can be utilized in transformers and solenoids.展开更多
Materials design aims to identify the material features that provide optimal properties for various engineering applications,such as aerospace,automotive,and naval.One of the important but challenging problems for mat...Materials design aims to identify the material features that provide optimal properties for various engineering applications,such as aerospace,automotive,and naval.One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties.This paper proposes an end-to-end artificial intelligence(AI)-driven microstructure optimization framework for elastic properties of materials.In this work,the microstructure is represented by the Orientation Distribution Function(ODF)that determines the volume densities of crystallographic orientations.The framework was evaluated on two crystal systems,cubic and hexagonal,for Titanium(Ti)in Joint Automated Repository for Various Integrated Simulations(JARVIS)database and is expected to be widely applicable for materials with multiple crystal systems.The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time.展开更多
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by as...The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.展开更多
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and therm...A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.展开更多
基金the Researchers Supporting Project number (RSP-2021/29),King Saud University,Riyadh,Saudi Arabia,for funding this research。
文摘Herein,we report the synthesis of Zn_(0.7)Mg_(0.3)Nd_(x)Fe_(2-x)O_(4)(where,x=0,0,0,01,0,02)ferrite nanoparticles by employing the sol-gel auto-combustion technique.The X-ray diffraction(XRD)pattern suggests the formation of a pure cubic structure,without any impurity phase,with an Fd3m space group at room temperature.With increasing doping amount,the crystallite size is reported as 35-41 nm,while the lattice parameters rise from 0.8381 to 0.8395 nm.Field emission scanning electron microscopy(FESEM)images show the formation of spherical grains with agglomerated morphology in all the samples,with grain sizes ranging from 49 to 103 nm.Energy dispersive X-ray spectroscopy(EDX)and elemental mapping investigation confirm the chemical purity of all the samples.Fourier transform infrared(FTIR)analysis shows the presence of two prominent peaks around 440 and 560 cm^(-1)that correspond to the octahedral and tetrahedral positions.In addition,the existence of five Raman active vibratio nal modes in all produced specimens again confirms the structural purity of all the samples.The M-H curve shows that saturation magnetization(M_(s))first increases from 14.98 to 28.22 emu/g and then decreases to 18.98emu/g with increasing doping amount.This is due to the A-B type super-exchange interaction for the synthesized samples.The variation in coercivity(H_(c))and magnetic anisotropy(K_(1))suggest the thermal stability of all the samples and can be utilized in transformers and solenoids.
基金This work was supported primarily by National Science Foundation(NSF)CMMI awards 2053929/2053840Partial support from NIST award 70NANB19H005 and DOE awards DE-SC0019358,DE-SC0021399 is also acknowledged.
文摘Materials design aims to identify the material features that provide optimal properties for various engineering applications,such as aerospace,automotive,and naval.One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties.This paper proposes an end-to-end artificial intelligence(AI)-driven microstructure optimization framework for elastic properties of materials.In this work,the microstructure is represented by the Orientation Distribution Function(ODF)that determines the volume densities of crystallographic orientations.The framework was evaluated on two crystal systems,cubic and hexagonal,for Titanium(Ti)in Joint Automated Repository for Various Integrated Simulations(JARVIS)database and is expected to be widely applicable for materials with multiple crystal systems.The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time.
基金National Natural Science Foundation of China(21603002)Talent Introduction Foundation of Anhui Science and Technology University(ZRC2014448)+2 种基金Key Discipline Foundation of Anhui Science and Technology University(AKZDXK2015A01)The Open Foundation of Chongqing Key Laboratory of Environmental&Remediation Technologies(CEK1502)Foundation of College Students Innovation and Entrepreneurship(2017S10879012)
文摘The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.
文摘A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.