Self-assembly of cadmium ions and the rigid bridging ligand 4,4′-methylenebis(3-hydroxy-2-naphthoic acid) (pamoic acid, H4PA) leads to a one-dimensional metal-organic framework with open cube-like M2(H2PA)2 cages wit...Self-assembly of cadmium ions and the rigid bridging ligand 4,4′-methylenebis(3-hydroxy-2-naphthoic acid) (pamoic acid, H4PA) leads to a one-dimensional metal-organic framework with open cube-like M2(H2PA)2 cages within its backbone, and exhibiting interesting yellow fluorescence.展开更多
A novel Pd(ll) organometal catalyst with three-dimensional (3D) cage-like la3d cubic mesoporous structure and high surface area was prepared. In comparison with the corresponding catalyst with two-dimensional (2D...A novel Pd(ll) organometal catalyst with three-dimensional (3D) cage-like la3d cubic mesoporous structure and high surface area was prepared. In comparison with the corresponding catalyst with two-dimensional (2D) P6mm hexagonal mesoporous structure, the as-prepared catalyst exhibited higher activities in the water-medium Suzuki coupling reactions owing to the diminished diffusion limit. It showed comparable efficiencies with the Pd(PPh3)2C12 homogeneous catalyst and could be easily recycled and reused for five times without significant loss of activity.展开更多
基金supported by the National Natural Science Foundation of China (20772019)NSF of Shanghai (08dj1400100)the Doctoral Program of National Education Ministry of China
文摘Self-assembly of cadmium ions and the rigid bridging ligand 4,4′-methylenebis(3-hydroxy-2-naphthoic acid) (pamoic acid, H4PA) leads to a one-dimensional metal-organic framework with open cube-like M2(H2PA)2 cages within its backbone, and exhibiting interesting yellow fluorescence.
文摘A novel Pd(ll) organometal catalyst with three-dimensional (3D) cage-like la3d cubic mesoporous structure and high surface area was prepared. In comparison with the corresponding catalyst with two-dimensional (2D) P6mm hexagonal mesoporous structure, the as-prepared catalyst exhibited higher activities in the water-medium Suzuki coupling reactions owing to the diminished diffusion limit. It showed comparable efficiencies with the Pd(PPh3)2C12 homogeneous catalyst and could be easily recycled and reused for five times without significant loss of activity.