With RF sputtering process, Si/Si02/Ta/Ru/Ta/CoFeB/MgO/CoFeB/Ta/Ru structure has been grown on Si (100) substrate. Attempting different targets and adjusting the oxygen dose, the crystallization quality of the MgO l...With RF sputtering process, Si/Si02/Ta/Ru/Ta/CoFeB/MgO/CoFeB/Ta/Ru structure has been grown on Si (100) substrate. Attempting different targets and adjusting the oxygen dose, the crystallization quality of the MgO layer is studied. The X-ray diffraction measurements demonstrate that crystal structure and crystallization quality of MgO layers are related to the type of target and concentration of oxygen in sputtering process. With the method sputtering Mg in an ambient flow of oxygen, not only the crystallization quality of a normal MgO layer with lattice constant of 0.421 nm is improved, but also a new MgO crystal with lattice constant of 0.812 nm is formed and the perpendicular magnetic anisotropy of CoFeB is enhanced. Also it is found that crystallization quality for both the normal MgO and new MgO is more improved with MgO target and same oxygen dose, which means that this new method is helpful to form a new structure of MgO annealed at 400 ℃ in vacuum. with lattice constant of 0.812 nm. All of the samples were展开更多
The polymorphic phase transformation of β-glycine to α-glycine was carried out both in the absence and presence of various concentrations of oleic acid used as additive at 25 ℃ in a water/ethanol medium. The effect...The polymorphic phase transformation of β-glycine to α-glycine was carried out both in the absence and presence of various concentrations of oleic acid used as additive at 25 ℃ in a water/ethanol medium. The effects of oleic acid and its concentration on phase transformation time were determined by continuously measuring the ultrasonic velocity. The crystals obtained by the completion of the phase transformation were characterized by XRD, SEM, and TG/DTG. The XRD and SEM results indicated that oleic acid significantly impacted phase transformation time and the morphological characteristics of the crystals. In addition to SEM analysis, detailed crystal shape analysis was performed and the circularity, elongation, and convexity parameters were determined quantitatively. TG/DTG analyses were performed to investigate thermal decomposition behavior and to calculate the activation energies based on different kinetic models such as FWO, KAS, Starink, and Tang kinetic models. With the addition of oleic acid to the medium, the calculated activation energy values increased from 89.63–90.63 to153.8–155.4 kJ·mol^(-1). The activation energy values showed that oleic acid was adsorbed on the crystal surface;this result was supported by FTIR, elemental, and Kjeldahl analyses.展开更多
This research summarizes the analytical and experimental results of heat-transfer processes influence on defects formation during sapphire crystal growth by horizontal directed crystallization method(HDC).The shape of...This research summarizes the analytical and experimental results of heat-transfer processes influence on defects formation during sapphire crystal growth by horizontal directed crystallization method(HDC).The shape of solid-melt interface significantly influences the process of sapphire crystals growth by this method.We receive the Stefan problem solution for sapphire crystals growth.It allows investigating the crystal growth process and the related factors(thermal stresses on different stages of growth process),their influence on defects formation.We investigate the main reasons for the formation of defective structures of the solid phase of sapphire crystals and the influence of thermal unit construction,the crystal geometry on the quality of the resulting sapphire crystal.We study the structure formation process,impurity distribution,and the nature of the defects in the crystal during it growth.展开更多
A tunable high-Q surface acoustic wave(SAW)resonator in the form of several parallel-connected interdigital transducers loaded on a varying capacitance on lithium niobate substrates was developed and studied.The worki...A tunable high-Q surface acoustic wave(SAW)resonator in the form of several parallel-connected interdigital transducers loaded on a varying capacitance on lithium niobate substrates was developed and studied.The working frequency range was 90-2450 MHz.A method of calculating such resonators,considering losses in the metal film as well as losses due to the propagation of SAWs and transformations into bulk waves is proposed.Such a design allows one to obtain a quality factor over 5000 in the frequency range 2400-2483 MHz.The resonant frequency shifts by 600 kHz when the capacitance changes by±25%of the value of 21 pF(or 32 ppm/pF)and has an almost linear character.展开更多
Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic...Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic peaks are ob- served at glass transition temperature (Tg) and crystallization temperature (Tc). From DSC scans, Tc is obtained at dif- ferent heating rates (5, 10, 15, 20, 25 K/min). It is observed that Tc increases with increasing heating rate for a particular glassy alloy. Activation energy of crystallization (Ec) has been calculated by different Non-isothermal Iso-conversional methods, i.e., Kissinger-Akahira-Sunose [KAS], Friedman, Flynn-wall-Ozawa [FWO], Friedman-Ozawa [FO] and Sta-rink methods. It is observed that Ec is dependent on extent of crystallization (α). Activation energy is also found to vary with atomic percentage of In in ternary Se80-xTe20Inx glassy system. The compositional dependence of Ec shows a re-versal in the trend at x = 15 in Se80-xTe20Inx, which is explained in terms of mechanically stabilized structure at this composition.展开更多
基金Project supported by the National Defense Advance Research Foundation(No.9140A080040410DZ106)the Basic Research Program of Ministry of Education,China(No.JY10000925005)+2 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.11JK0912)the Scientific Research Foundation of Xi’an University of Science and Technology(No.2010011)the Doctoral Research Startup Fund of Xi’an University of Science and Technology(No.2010QDJ029)
文摘With RF sputtering process, Si/Si02/Ta/Ru/Ta/CoFeB/MgO/CoFeB/Ta/Ru structure has been grown on Si (100) substrate. Attempting different targets and adjusting the oxygen dose, the crystallization quality of the MgO layer is studied. The X-ray diffraction measurements demonstrate that crystal structure and crystallization quality of MgO layers are related to the type of target and concentration of oxygen in sputtering process. With the method sputtering Mg in an ambient flow of oxygen, not only the crystallization quality of a normal MgO layer with lattice constant of 0.421 nm is improved, but also a new MgO crystal with lattice constant of 0.812 nm is formed and the perpendicular magnetic anisotropy of CoFeB is enhanced. Also it is found that crystallization quality for both the normal MgO and new MgO is more improved with MgO target and same oxygen dose, which means that this new method is helpful to form a new structure of MgO annealed at 400 ℃ in vacuum. with lattice constant of 0.812 nm. All of the samples were
基金Supported by Marmara University Scientific Research Projects Commission under the funding FEN-C-DRP-131216-0547
文摘The polymorphic phase transformation of β-glycine to α-glycine was carried out both in the absence and presence of various concentrations of oleic acid used as additive at 25 ℃ in a water/ethanol medium. The effects of oleic acid and its concentration on phase transformation time were determined by continuously measuring the ultrasonic velocity. The crystals obtained by the completion of the phase transformation were characterized by XRD, SEM, and TG/DTG. The XRD and SEM results indicated that oleic acid significantly impacted phase transformation time and the morphological characteristics of the crystals. In addition to SEM analysis, detailed crystal shape analysis was performed and the circularity, elongation, and convexity parameters were determined quantitatively. TG/DTG analyses were performed to investigate thermal decomposition behavior and to calculate the activation energies based on different kinetic models such as FWO, KAS, Starink, and Tang kinetic models. With the addition of oleic acid to the medium, the calculated activation energy values increased from 89.63–90.63 to153.8–155.4 kJ·mol^(-1). The activation energy values showed that oleic acid was adsorbed on the crystal surface;this result was supported by FTIR, elemental, and Kjeldahl analyses.
基金The authors thank the Slovak partners(CEIT a.s.)for cooperation.The study was carried out with the financial support of the Russian Foundation for Basic Research,Project No.19-52-53026.
文摘This research summarizes the analytical and experimental results of heat-transfer processes influence on defects formation during sapphire crystal growth by horizontal directed crystallization method(HDC).The shape of solid-melt interface significantly influences the process of sapphire crystals growth by this method.We receive the Stefan problem solution for sapphire crystals growth.It allows investigating the crystal growth process and the related factors(thermal stresses on different stages of growth process),their influence on defects formation.We investigate the main reasons for the formation of defective structures of the solid phase of sapphire crystals and the influence of thermal unit construction,the crystal geometry on the quality of the resulting sapphire crystal.We study the structure formation process,impurity distribution,and the nature of the defects in the crystal during it growth.
基金This research work is supported by the Russian Ministry of Science and Higher Education under the project No.16.5405.2017/8.9。
文摘A tunable high-Q surface acoustic wave(SAW)resonator in the form of several parallel-connected interdigital transducers loaded on a varying capacitance on lithium niobate substrates was developed and studied.The working frequency range was 90-2450 MHz.A method of calculating such resonators,considering losses in the metal film as well as losses due to the propagation of SAWs and transformations into bulk waves is proposed.Such a design allows one to obtain a quality factor over 5000 in the frequency range 2400-2483 MHz.The resonant frequency shifts by 600 kHz when the capacitance changes by±25%of the value of 21 pF(or 32 ppm/pF)and has an almost linear character.
文摘Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic peaks are ob- served at glass transition temperature (Tg) and crystallization temperature (Tc). From DSC scans, Tc is obtained at dif- ferent heating rates (5, 10, 15, 20, 25 K/min). It is observed that Tc increases with increasing heating rate for a particular glassy alloy. Activation energy of crystallization (Ec) has been calculated by different Non-isothermal Iso-conversional methods, i.e., Kissinger-Akahira-Sunose [KAS], Friedman, Flynn-wall-Ozawa [FWO], Friedman-Ozawa [FO] and Sta-rink methods. It is observed that Ec is dependent on extent of crystallization (α). Activation energy is also found to vary with atomic percentage of In in ternary Se80-xTe20Inx glassy system. The compositional dependence of Ec shows a re-versal in the trend at x = 15 in Se80-xTe20Inx, which is explained in terms of mechanically stabilized structure at this composition.