Pyrrhotite is an associated mineral that exists widely in sulfide ore. The presence of pyrrhotite will affect the recovery of platinum group minerals. Therefore, researchers have paid increasing attention to the flota...Pyrrhotite is an associated mineral that exists widely in sulfide ore. The presence of pyrrhotite will affect the recovery of platinum group minerals. Therefore, researchers have paid increasing attention to the flotation separation of pyrrhotite. Pyrrhotite superstructures owning different Fe/S ratios results in various crystal structures, corresponding to different physical, chemical and electronic properties, and consequently different flotation behavior. In the present paper, a comprehensive review is conducted to discuss the influence of crystal structures on the natural floatability, mineral-reagent interaction, surface oxidation and flotation electrochemistry of pyrrhotite. The selective flotation process of pyrrhotite from its associated minerals is also reviewed in this paper. It is hoped that this review can summarize the newly published research results combined with some representative results from the past, to provide a theoretical basis for the study of the flotation mechanism of pyrrhotite and provide a new direction for future research on pyrrhotite.展开更多
We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-M...We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type,toβ-CrFe-type,and then bcc-W-type.The measurements of physical properties show that the Ru_(1-x)Mo_(x)samples with x≥0.2are superconductors and the superconducting transition temperature T_c as a function of Mo content exhibits a dome-like behavior.展开更多
基金supported by National Natural Science Foundation of China (NSFC52174246,NSFC51864003)Guangxi Natural Science Foundation (2018GXNSFAA050127)。
文摘Pyrrhotite is an associated mineral that exists widely in sulfide ore. The presence of pyrrhotite will affect the recovery of platinum group minerals. Therefore, researchers have paid increasing attention to the flotation separation of pyrrhotite. Pyrrhotite superstructures owning different Fe/S ratios results in various crystal structures, corresponding to different physical, chemical and electronic properties, and consequently different flotation behavior. In the present paper, a comprehensive review is conducted to discuss the influence of crystal structures on the natural floatability, mineral-reagent interaction, surface oxidation and flotation electrochemistry of pyrrhotite. The selective flotation process of pyrrhotite from its associated minerals is also reviewed in this paper. It is hoped that this review can summarize the newly published research results combined with some representative results from the past, to provide a theoretical basis for the study of the flotation mechanism of pyrrhotite and provide a new direction for future research on pyrrhotite.
基金Project supported by Beijing Natural Science Foundation (Grant No.Z200005)the National Key R&D Program of China (Grant Nos.2018YFE0202600 and 2022YFA1403800)+1 种基金the National Natural Science Foundation of China (Grant No.12274459)Beijing National Laboratory for Condensed Matter Physics,and Collaborative Research Project of Laboratory for Materials and Structures,Institute of Innovative Research,Tokyo Institute of Technology。
文摘We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type,toβ-CrFe-type,and then bcc-W-type.The measurements of physical properties show that the Ru_(1-x)Mo_(x)samples with x≥0.2are superconductors and the superconducting transition temperature T_c as a function of Mo content exhibits a dome-like behavior.