Homogeneous cordierite has been synthesized at low cost by talc-magnesite and coal gangue as the main raw materials. The mechanism of synthesizing cordierite under such a composing system of raw materials, and the eff...Homogeneous cordierite has been synthesized at low cost by talc-magnesite and coal gangue as the main raw materials. The mechanism of synthesizing cordierite under such a composing system of raw materials, and the effect of temperature on the crystal cell parameters and microstructure and thermal expansion coefficient of cordierite crystal have been studied via testing methods of XRD, SEM, etc. The result shows that the homogeneous cordierite can be synthesized by the systematic composing materials of "talc-magnesite-coal gangue-talc" with heat pre-servation at 1350 ℃ for 1 h; as the keeping time is prolonged, Al^3+ and Mg^2+ in cordierite crystal are replaced by a few impurity ions such as Fe^3+, Fe^2+, etc., and the crystal cell parameters of cordierite present an increase trend; as the high-temperature heat preservation is prolonged, the content of glassy phase in the sample is increased, its density is improved, and its thermal expansion coefficient presents an increase trend.展开更多
基金This work was supported by the National Natural Science Foundation of China (50672056) Scientific Research and Innovation Foundation of Shaanxi University of Science & Technology (SUST-B14)
文摘Homogeneous cordierite has been synthesized at low cost by talc-magnesite and coal gangue as the main raw materials. The mechanism of synthesizing cordierite under such a composing system of raw materials, and the effect of temperature on the crystal cell parameters and microstructure and thermal expansion coefficient of cordierite crystal have been studied via testing methods of XRD, SEM, etc. The result shows that the homogeneous cordierite can be synthesized by the systematic composing materials of "talc-magnesite-coal gangue-talc" with heat pre-servation at 1350 ℃ for 1 h; as the keeping time is prolonged, Al^3+ and Mg^2+ in cordierite crystal are replaced by a few impurity ions such as Fe^3+, Fe^2+, etc., and the crystal cell parameters of cordierite present an increase trend; as the high-temperature heat preservation is prolonged, the content of glassy phase in the sample is increased, its density is improved, and its thermal expansion coefficient presents an increase trend.