期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing 被引量:12
1
作者 Dharmendra Singh P.Nageswara Rao R.Jayaganthan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期759-769,共11页
The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvem... The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvements in strength and hardness. The ultimate tensile strength increases up to 340 MPa and 390 MPa for the 30% and 50% cryorolled samples, respectively. The cryorolled samples, with 30% and 50% reduction, were subjected to Charpy impact testing at various temperatures from 190℃ to 100℃. It is observed that increasing the percentage of reduction of samples during cryorolling has significant effect on decreasing impact toughness at all temperatures by increasing yield strength and decreasing ductility. Annealing of samples after cryorolling shows remarkable increment in impact toughness through recovery and recrystallization. The average grain size of the 50% cryorolled sample (14 μm) after annealing at 350℃ for 1 h is found to be finer than that of the 30% cryorolled sample (25 μm). The scanning electron microscopy (SEM) analysis of fractured surfaces shows a large-size dimpled morphology, resembling the ductile fracture mechanism in the starting material and fibrous structure with very fine dimples in cryorolled samples corresponding to the brittle fracture mechanism. 展开更多
关键词 aluminum alloys cryorolling ANNEALING microstructure impact toughness recovery RECRYSTALLIZATION
下载PDF
Effect of Post Cryorolling Treatments on Microstructural and Mechanical Behaviour of Ultrafine Grained Al-Mg-Si Alloy 被引量:8
2
作者 P.Nageswara rao Dharmendra Singh R.Jayaganthan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第10期998-1005,共8页
To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling... To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling (CR + WR) and compared with cryorolling followed by short annealing (CR + SA) at the same temperature. Transmission electron microscopy (TEM) was used to characterize the microstructural features of the processed material. The mechanical properties were investigated through Vickers hardness testing and tensile testing at room temperature. TEM, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate the precipitation evolution in UFG material. Results indicated that the alloy subjected to CR + WR has shown improved mechanical properties (114 HV, ultimate tensile strength (UTS): 350 MPa) as compared to that in the case of CR + SA (105 HV, UTS: 285 MPa). The size of the precipitates observed in CR + WR sample after peak ageing treatment is finer than that of peak aged CR + SA sample. The UTS of peak aged CR + WR sample (UTS: 390 MPa) was found to be higher than that of peak aged CR + SA sample (UTS: 355 MPa), without decrease in ductility. 展开更多
关键词 Aluminium alloy cryorolling Warm rolling Short annealing Mechanical properties Differential scanning calorimetry (DSC)
原文传递
Microstructure evolution and mechanical properties of Al−3.6Cu−1Li alloy via cryorolling and aging 被引量:8
3
作者 Chang LI Han-qing XIONG +5 位作者 Laxman BHATTA Lin WANG Zhao-yang ZHANG Hui WANG Charlie KONG Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2904-2914,共11页
An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro... An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases. 展开更多
关键词 Al−Cu−Li alloy cryorolling AGING precipitation strengthening mechanical property
下载PDF
Effect of cryorolling on microstructure and property of high strength and high conductivity Cu−0.5wt.%Cr alloy 被引量:7
4
作者 Peng-chao ZHANG Jie-fu SHI +2 位作者 Ying-shui YU Jun-cai SUN Ting-ju LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2472-2479,共8页
Cu−0.5wt.%Cr alloy with high strength and high conductivity was processed by cryorolling(CR)and room temperature rolling(RTR),respectively.The microstructure,mechanical property and electrical conductivity of Cu−0.5Cr... Cu−0.5wt.%Cr alloy with high strength and high conductivity was processed by cryorolling(CR)and room temperature rolling(RTR),respectively.The microstructure,mechanical property and electrical conductivity of Cu−0.5Cr alloy after CR/RTR and aging treatment were investigated.The results indicate that obvious dislocation entanglement can be observed in matrix of CR alloy.The Cr particles in the alloy after CR and aging treatment possess finer particle size and exhibit dispersive distribution.The peak hardness of CR alloy is HV 167.4,significantly higher than that of RTR alloy.The optimum mechanical property of CR alloy is obtained after aging at 450℃ for 120 min.The conductivity of CR Cu−0.5Cr alloy reaches 92.5%IACS after aging at 450℃ for 120 min,which is slightly higher than that of RTR alloy. 展开更多
关键词 Cu−Cr alloy cryorolling microstructure mechanical property electrical conductivity
下载PDF
Fabrication of ultrafine-grained AA1060 sheets via accumulative roll bonding with subsequent cryorolling 被引量:7
5
作者 Qing-lin DU Chang LI +2 位作者 Xiao-hui CUI Charlie KONG Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3370-3379,共10页
Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer... Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling. 展开更多
关键词 microstructure AA1060 sheet ultrafine-grained materials cryorolling accumulative roll bonding
下载PDF
深冷轧制对AISI 310S不锈钢组织和性能的影响 被引量:7
6
作者 李鹏燕 熊毅 +2 位作者 陈路飞 任凤章 王晓国 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第3期112-117,共6页
采用深冷轧制技术对AISI 310S奥氏体不锈钢进行不同变形量的实验,借助OM、SEM、TEM、XRD及微拉伸试验等方法研究了不同变形量下奥氏体不锈钢的组织特性及性能变化规律。结果表明:奥氏体不锈钢在深冷轧制不同变形量下均未发生应变诱发马... 采用深冷轧制技术对AISI 310S奥氏体不锈钢进行不同变形量的实验,借助OM、SEM、TEM、XRD及微拉伸试验等方法研究了不同变形量下奥氏体不锈钢的组织特性及性能变化规律。结果表明:奥氏体不锈钢在深冷轧制不同变形量下均未发生应变诱发马氏体相变,在变形量为30%时,组织内部出现高密度位错且夹杂少量的形变孪晶,随着变形量增大至70%时,组织内部出现大量形变孪晶,孪晶与位错的交互作用显著加剧;到变形量为90%时,晶粒完全碎化至纳米量级。而且随着变形量的增大,强度指标大幅度上升,屈服强度、抗拉强度分别从原始态的305 MPa、645 MPa增加至1099 MPa、1560 MPa;而伸长率则从40.8%(原始)下降至6.4%(变形量90%),拉伸断口由韧性断裂向准解理断裂转变。 展开更多
关键词 奥氏体不锈钢 深冷轧制 微观组织 力学性能
原文传递
High strength and high electrical conductivity CuMg alloy prepared by cryorolling 被引量:6
7
作者 Yun-xiang TONG Si-yuan LI +2 位作者 Dian-tao ZHANG Li LI Yu-feng ZHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期595-600,共6页
The microstructure, mechanical properties and electrical conductivity of the room-temperature and cryogenically rolled Cu-0.2wt.%Mg alloy were investigated by transmission electron microscopy (TEM), electron backscatt... The microstructure, mechanical properties and electrical conductivity of the room-temperature and cryogenically rolled Cu-0.2wt.%Mg alloy were investigated by transmission electron microscopy (TEM), electron backscattered diffraction (EBSD), hardness measurement, tensile tests and electrical conductivity measurement. The results show that for the cryorolled sample, the grain size is decreased by 41% compared with the sample processed at room temperature. With increasing thickness reduction, the microhardness of the alloy continuously increases and the electrical conductivity decreases. For the sample with 90% thickness reduction rolled at cryogenic temperature, the tensile strength and the electrical conductivity are 726 MPa and 74.5% IACS, respectively. The improved tensile strength can be mainly attributed to the grain boundaries strengthening and dislocation strengthening. 展开更多
关键词 CuMg alloy cryorolling mechanical properties grain size TWIN
下载PDF
低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响
8
作者 李龙健 李仁庚 +3 位作者 张家郡 曹兴豪 康慧君 王同敏 《金属学报》 SCIE EI CAS CSCD 北大核心 2024年第3期405-416,共12页
随着现代工业中交通、电气、航空航天、电子等领域的快速发展,对铜合金的性能要求越来越高。强度和导电率是相互矛盾的性质,实现铜合金兼具高强度和高导电率是现代铜工业发展的重要课题。采用真空熔炼、低温轧制、时效处理等工艺制备了C... 随着现代工业中交通、电气、航空航天、电子等领域的快速发展,对铜合金的性能要求越来越高。强度和导电率是相互矛盾的性质,实现铜合金兼具高强度和高导电率是现代铜工业发展的重要课题。采用真空熔炼、低温轧制、时效处理等工艺制备了Cu-1Cr-0.2Zr-0.25Nb(质量分数,%)合金,研究了低温轧制对Cu-1Cr-0.2Zr-0.25Nb合金显微组织、力学性能和导电性能的影响,分析了时效工艺对析出相种类、形貌和分布的影响。结果表明,Cu-1Cr-0.2Zr-0.25Nb合金主要由Cr相、富Zr相、Cr2Nb相及Cu基体相组成。450℃短时(30 min)时效后Cu-1Cr-0.2Zr-0.25Nb合金即可析出纳米级fcc结构的Cr析出相,在长时间(300 min)时效后,会形成bcc结构的Cr析出相。Cu-1Cr-0.2Zr-0.25Nb合金经过低温轧制和时效处理后,在Cu基体中形成了纳米析出相、纳米变形孪晶和位错等混合组织并获得了优异的综合性能。低温轧制Cu-1Cr-0.2Zr-0.25Nb合金450℃时效30 min后,抗拉强度为700 MPa,导电率为73.29%IACS;450℃时效300 min后,导电率可达79.81%IACS,此时,抗拉强度、屈服强度和硬度分别为646 MPa、606 MPa和212 HV。结合实验结果和对强度贡献计算表明,位错强化和析出强化是Cu-1Cr-0.2Zr-0.25Nb合金的主要强化机制。 展开更多
关键词 Cu-1Cr-0.2Zr-0.25Nb合金 低温轧制 析出相 强度 导电率
原文传递
Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature Short-Time Annealing
9
作者 Zhide Li Hao Gu +2 位作者 Kaiguang Luo Charlie Kong Hailiang Yu 《Engineering》 SCIE EI CAS CSCD 2024年第2期190-203,共14页
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel... Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes. 展开更多
关键词 cryorolling ANNEALING NICKEL Strain hardening DUCTILITY
下载PDF
深冷轧制态H65黄铜板料抗拉强度的尺寸效应 被引量:6
10
作者 郭晓妮 黄慧强 +2 位作者 龚殿尧 徐建忠 汪德强 《材料热处理学报》 EI CAS CSCD 北大核心 2017年第10期23-28,共6页
借助光学显微镜、透射电镜、X射线衍射及微拉伸试验等方法研究了深冷轧制工艺对H65黄铜板显微组织和抗拉强度的影响,分析了试样厚度引起的微尺寸效应对其力学性能的影响规律。结果表明:H65黄铜在深冷轧制不同变形量下均无新相产生;经过... 借助光学显微镜、透射电镜、X射线衍射及微拉伸试验等方法研究了深冷轧制工艺对H65黄铜板显微组织和抗拉强度的影响,分析了试样厚度引起的微尺寸效应对其力学性能的影响规律。结果表明:H65黄铜在深冷轧制不同变形量下均无新相产生;经过不同变形量的深冷轧制,H65黄铜板厚度从500μm减薄至70μm,显微组织逐渐细化并出现纤维组织,厚度为100μm时,组织内部出现了高密度位错和大量形变孪晶,孪晶与位错的交互作用显著;随着厚度的减小,强度上升,抗拉强度从原始态的474 MPa增加到734 MPa,表现出"越小越强"的尺寸效应。 展开更多
关键词 H65黄铜 深冷轧制 微观组织 尺寸效应
原文传递
7075铝合金深冷轧制及时效处理微观组织和性能 被引量:1
11
作者 杨世森 邢健瑞 +2 位作者 王正宇 Charlie KONG 喻海良 《中国有色金属学报》 EI CAS CSCD 北大核心 2023年第11期3503-3524,共22页
采用深冷轧制和室温轧制及峰值时效处理制备了不同厚度的7075铝合金板材,利用硬度测试、拉伸试验、X射线衍射、扫描电子显微镜和透射电子显微镜分析了轧制板材的力学性能和微观组织演变。结果表明:与室温轧制板材发生了严重边裂不同,深... 采用深冷轧制和室温轧制及峰值时效处理制备了不同厚度的7075铝合金板材,利用硬度测试、拉伸试验、X射线衍射、扫描电子显微镜和透射电子显微镜分析了轧制板材的力学性能和微观组织演变。结果表明:与室温轧制板材发生了严重边裂不同,深冷轧制板材始终未发生边裂。轧制强化效果随压下率增加而提高,80%压下率的深冷轧制样品屈服强度和抗拉强度较固溶样品分别提高155%和44%。深冷轧制样品在峰值时效后强度和塑性同时提升。20%、40%、60%和80%压下率的深冷轧制+峰值时效样品与室温轧制+峰值时效样品相比,断裂伸长率分别提高8.7%、18.5%、45.5%和57.4%,这是时效引起的位错湮灭、深冷轧制更均匀的变形和深冷轧制+峰值时效样品中细小析出相的共同作用。 展开更多
关键词 7075铝合金 深冷轧制 峰值时效 高塑性 析出强化
下载PDF
Low-temperature superplasticity of cryorolled Ti-6Al-4V titanium alloy sheets 被引量:1
12
作者 Fei-Long Yu Charlie Kong Hai-Liang Yu 《Tungsten》 EI CSCD 2023年第4期522-530,共9页
To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been... To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been studied using transmission electron microscopy and electron backscatter diffraction.When the tensile temperature was 760℃(<0.5T_(m),T_(m)is absolute melting point of alloy.)and the strain rate was 5×10^(-4)s^(-1),the fracture elongation of the sample reached 385%,showing good low-temperature superplasticity.Compared with the tensile temperature of 760℃,the fracture elongation of the s ample at 830℃was lower due to grain coarsening and oxidation.The strain rate sensitivity value m of all samples was larger than0.3,which confirmed that the cryorolled Ti-6A1-4V titanium alloy with a non-equiaxed grains structure can achieve high superplasticity at a temperature lower than 0.5T_(m),and indicated that the main deformation mechanisms in the tensile test at760-830℃were grain rotation and grain boundary sliding.After the tensile test,the average grain size of all samples was less than 5μm,in which significant dynamic recrystallization and recovery occurred. 展开更多
关键词 Ti-6Al-4V alloy cryorolling Non-equiaxed grains structure SUPERPLASTICITY
原文传递
Strengthening contributions in ultra-high strength cryorolled Al-4%Cu-3%TiB_2 in situ composite 被引量:5
13
作者 N.NAGA KRISHNA K.SIVAPRASAD P.SUSILA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期641-647,共7页
Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in sit... Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening. 展开更多
关键词 Al alloy cryorolling metal matrix composites ultrafine grained microstructure strengthening mechanisms
下载PDF
Effect of deformation temperature on precipitation, microstructural evolution, mechanical and corrosion behavior of 6082 Al alloy 被引量:5
14
作者 NikhilKUMAR R.JAYAGANTHAN Heinz-GünterBROKMEIER 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期475-492,共18页
The influence of cryorolling(CR),room temperature rolling(RTR)and post annealing on precipitation,microstructuralevolution(recovery,recrystallisation and grain growth),mechanical and corrosion behavior,was investigate... The influence of cryorolling(CR),room temperature rolling(RTR)and post annealing on precipitation,microstructuralevolution(recovery,recrystallisation and grain growth),mechanical and corrosion behavior,was investigated in the present work.The precipitation kinetics and microstructural morphology of CR,RTR,and post annealed samples were investigated by differentialscanning calorimetry(DSC),transmission electron microscopy(TEM),and electron back scattered diffraction(EBSD)to elucidatethe observed mechanical properties.After annealing at200°C,UTS and hardness of CR samples(345MPa and HV127)wereimproved as compared to RTR samples(320MPa and HV115).The increase in hardness and UTS of CR samples after annealing at200°C was due to precipitation ofβ''from Al matrix,which imparted higher Zener drag effect as compared to RTR samples.Theimprovement in corrosion and pitting potentials was observed for CR samples(?1.321V and?700mV)as compared to RTRsamples(?1.335V and?710mV).In CR samples,heavy dislocation density and dissolution of Mg4Al3Si4-precipitates in the Almatrix have improved corrosion resistance of the alloy through formation of protective passive layer and suppression of galvanic cell,respectively. 展开更多
关键词 aluminum alloy cryorolling mechanical property corrosion potential PRECIPITATION
下载PDF
Effect of annealing time on microstructure and mechanical properties of cryorolled AISI 310S stainless steel 被引量:1
15
作者 Xue-kui Lian Yong Li +5 位作者 Yi Xiong Yong-li Wu Shun Han Tian-tian He Chun-xu Wang Feng-zhang Ren 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第3期548-556,共9页
AISI 310S stable austenitic stainless steel was subjected to 90%cryorolling and then annealed at 800 ℃ for 2-60 min.The effect of annealing time on the microstructure and mechanical properties was studied by optical ... AISI 310S stable austenitic stainless steel was subjected to 90%cryorolling and then annealed at 800 ℃ for 2-60 min.The effect of annealing time on the microstructure and mechanical properties was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,microhardness and tensile test.The results show that the grain size of AISI 310S stainless steel is refined to the nanometer level after 90%cryorolling,and the grain size is approximately 20 nm.With the increase in annealing time,the degree of grain recrystallization occurs more fully and completely,as the grain begins to grow and then tends to stabilize.The strength and hardness of the annealed specimens decrease with increasing annealing time,while elongation tends to increase.When the annealing time is 10 min,the yield strength increases by about 2 times compared to that of the original austenite(unrolled),and the elongation is also above 20%,which is the best preparation process for ultra-fine grain austenitic stainless steel under this experimental condition.As the annealing time treatment increases,the fracture morphology changes from mixed quasi-cleavage and ductile fracture(after cryorolling)to ductile fracture(after annealing). 展开更多
关键词 Austenitic stainless steel cryorolling Annealing time MICROSTRUCTURE Mechanical property
原文传递
Microstructure and mechanical properties of cryorolled AZ31 magnesium alloy sheets with different initial textures 被引量:2
16
作者 Jin-ru Luo Ya-qiong Yan +1 位作者 Ji-shan Zhang Lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期827-834,共8页
AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scann... AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy(SEM), electron backscatter diffraction(EBSD), and X-ray diffraction(XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction(RD) and transverse directions(TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A {10 12} extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling. 展开更多
关键词 magnesium alloy cryorolling microstructure mechanical properties twinning
下载PDF
超低温轧制纳米孪晶Cu-Zn-Si合金的退火行为 被引量:4
17
作者 秦佳 杨续跃 +1 位作者 叶友雄 张祥凯 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第5期1340-1344,共5页
在超低温(液氮浸泡)下经多道次轧制制备了纳米孪晶Cu-Zn-Si合金,分析了轧制温度对Cu-Zn-Si合金力学性能和退火行为的影响。结果表明:合金在超低温轧制过程中形成大量厚度约为10 nm的超细孪晶,促进其硬度和强度提高;对超低温轧制的合金退... 在超低温(液氮浸泡)下经多道次轧制制备了纳米孪晶Cu-Zn-Si合金,分析了轧制温度对Cu-Zn-Si合金力学性能和退火行为的影响。结果表明:合金在超低温轧制过程中形成大量厚度约为10 nm的超细孪晶,促进其硬度和强度提高;对超低温轧制的合金退火,更易于诱发再结晶、提高再结晶形核率;利用超低温轧制产生的纳米孪晶界和退火形成的亚微米晶粒,能使合金兼具优异的强度和塑性;经90%超低温轧制和280℃/5 h退火处理后,合金的抗拉强度达787 MPa,延伸率为14.3%。 展开更多
关键词 铜合金 超低温轧制 退火 孪晶 再结晶
原文传递
不同温度变形量对AISI310S不锈钢组织和性能的影响 被引量:4
18
作者 秦小才 熊毅 +2 位作者 任凤章 高广东 刘治军 《河南科技大学学报(自然科学版)》 CAS 北大核心 2016年第4期1-6,115,共6页
借助X射线衍射、扫描电子显微镜、透射电子显微镜、硬度测试及微拉伸试验等方法,分析了AISI310S奥氏体不锈钢在不同温度大变形后的组织和性能。分析结果表明:在不同温度大变形后,奥氏体不锈钢组织在不同变形量下均未发生应变诱发马氏体... 借助X射线衍射、扫描电子显微镜、透射电子显微镜、硬度测试及微拉伸试验等方法,分析了AISI310S奥氏体不锈钢在不同温度大变形后的组织和性能。分析结果表明:在不同温度大变形后,奥氏体不锈钢组织在不同变形量下均未发生应变诱发马氏体相变。在变形量较小的情况下,微观组织以高密度位错和位错缠结为主;随着变形量的增大,微观组织以形变孪晶为主;当变形量增大至90%以后,奥氏体不锈钢晶粒尺寸细化至纳米量级,深冷轧制晶粒细化程度显著高于室温冷轧。深冷轧制态的屈服强度、拉抗强度和硬度也均高于室温冷轧态。随着变形量的增大,延伸率明显下降,拉伸断口形貌均从韧性断裂向准解理断裂转变。 展开更多
关键词 奥氏体不锈钢 室温冷轧 深冷轧制 微观组织
下载PDF
Mechanical properties and microstructure evolution of an Al-Cu-Li alloy subjected to rolling and aging 被引量:4
19
作者 WANG Lin BHATTA Laxman +4 位作者 XIONG Han-qing LI Chang CUI Xiao-hui KONG Charlie YU Hai-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3800-3817,共18页
The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dy... The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dynamic precipitation and dislocation characterizations were examined via transmission electron microscopy and X-ray diffraction. The grain morphologies and the fracture-surface morphologies were studied via optical microscopy and scanning electron microscopy. Samples subjected to cryorolling followed by aging exhibited relatively high dislocation densities and a large number of precipitates compared with hot-rolled samples. The samples cryorolled at-190 ℃ and then aged for 15 h presented the highest ultimate tensile strength(586 MPa), while the alloy processed via hot rolling followed by 10 h aging exhibited the highest uniform elongation rate(11.5%). The size of precipitates increased with the aging time, which has significant effects on the interaction mechanism between dislocations and precipitates. Bowing is the main interaction method between the deformation-induced dislocations and coarsened precipitates during tensile tests, leading to the decline of the mechanical properties of the alloy during overaging. These interesting findings can provide significant insights into the development of materials possessing both excellent strength and high ductility. 展开更多
关键词 Al-Cu-Li alloy cryorolling artificial aging dynamic precipitation dislocation density mechanical property
下载PDF
Preparation of high-mechanical-property medium-entropy CrCoNi alloy by asymmetric cryorolling 被引量:3
20
作者 Yu-ze WU Zhao-yang ZHANG +5 位作者 Juan LIU Charlie KONG Yu WANG Puneet TANDON Alexander PESIN Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1559-1574,共16页
In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were... In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility. 展开更多
关键词 medium entropy alloy heterogeneous structure ANNEALING mechanical properties asymmetric cryorolling
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部