This paper aims effect on crude distillation to investigate the multi-stage units (CDUs) in thermody- namics. In this regard, we proposed three-, four-, five-, and six-stage CDU processes with all variables constrai...This paper aims effect on crude distillation to investigate the multi-stage units (CDUs) in thermody- namics. In this regard, we proposed three-, four-, five-, and six-stage CDU processes with all variables constrained to be almost the same except for the number of stages. We also analyzed the energy and exergy to assess the energy consumed by each process. Because additional distillation units would share the processing load and thus prevent products with low boiling points from overheating, the heat demand of the CDUs decreases with increasing stages and thus reduces the heat supply. Exergy loss is considered as a key parameter to assess these processes. When the exergy losses in heat exchangers are disregarded, the three- and four-stage CDUs have lower exergy losses than the five- and six-stage CDUs. When the overall exergy losses are considered, the optimum number of stages of CDUs depends on the exergy efficiency of heat integration.展开更多
It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil...It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil refining process, the atmospheric distillation column is paid more attention to save energy. In this paper, the optimal problem of energy utilization efficiency of the atmospheric distillation column is solved by defining a new energy efficiency indicator - the distillation yield rate of unit energy consumption from the perspective of material flow and energy flow, and a soft-sensing model for this new energy efficiency indicator with respect to the multiple working conditions and intelligent optimizing control strategy are suggested for both increasing distillation yield and decreasing energy consumption in oil refining process. It is found that the energy utilization efficiency level of the atmospheric distillation column depends closely on the typical working conditions of the oil refining process, which result by changing the outlet temperature, the overhead temperature, and the bottom liquid level of the atmospheric pressure tower. The fuzzy C-means algorithm is used to classify the typical operation conditions of atmospheric distillation in oil refining process. Furthermore, the LSSVM method optimized with the improved particle swarm optimization is used to model the distillation rate of unit energy consumption. Then online optimization of oil refining process is realized by optimizing the outlet temperature, the overhead temperature with IPSO again. Simulation comparative analyses are made by empirical data to verify the effectiveness of the proposed solution.展开更多
文摘This paper aims effect on crude distillation to investigate the multi-stage units (CDUs) in thermody- namics. In this regard, we proposed three-, four-, five-, and six-stage CDU processes with all variables constrained to be almost the same except for the number of stages. We also analyzed the energy and exergy to assess the energy consumed by each process. Because additional distillation units would share the processing load and thus prevent products with low boiling points from overheating, the heat demand of the CDUs decreases with increasing stages and thus reduces the heat supply. Exergy loss is considered as a key parameter to assess these processes. When the exergy losses in heat exchangers are disregarded, the three- and four-stage CDUs have lower exergy losses than the five- and six-stage CDUs. When the overall exergy losses are considered, the optimum number of stages of CDUs depends on the exergy efficiency of heat integration.
基金Supported by the High-tech Research and Development Program of China(2014AA041802)
文摘It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil refining process, the atmospheric distillation column is paid more attention to save energy. In this paper, the optimal problem of energy utilization efficiency of the atmospheric distillation column is solved by defining a new energy efficiency indicator - the distillation yield rate of unit energy consumption from the perspective of material flow and energy flow, and a soft-sensing model for this new energy efficiency indicator with respect to the multiple working conditions and intelligent optimizing control strategy are suggested for both increasing distillation yield and decreasing energy consumption in oil refining process. It is found that the energy utilization efficiency level of the atmospheric distillation column depends closely on the typical working conditions of the oil refining process, which result by changing the outlet temperature, the overhead temperature, and the bottom liquid level of the atmospheric pressure tower. The fuzzy C-means algorithm is used to classify the typical operation conditions of atmospheric distillation in oil refining process. Furthermore, the LSSVM method optimized with the improved particle swarm optimization is used to model the distillation rate of unit energy consumption. Then online optimization of oil refining process is realized by optimizing the outlet temperature, the overhead temperature with IPSO again. Simulation comparative analyses are made by empirical data to verify the effectiveness of the proposed solution.