期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Leveraging Human-AI Collaboration in Crowd-Powered Source Search:A Preliminary Study
1
作者 Yong Zhao Zhengqiu Zhu +1 位作者 Bin Chen Sihang Qiu 《Journal of Social Computing》 EI 2023年第2期95-111,共17页
Source search is an important problem in our society,relating to finding fire sources,gas sources,or signal sources.Particularly,in an unexplored and potentially dangerous environment,an autonomous source search algor... Source search is an important problem in our society,relating to finding fire sources,gas sources,or signal sources.Particularly,in an unexplored and potentially dangerous environment,an autonomous source search algorithm that employs robotic searchers is usually applied to address the problem.Such environments could be completely unknown and highly complex.Therefore,novel search algorithms have been designed,combining heuristic methods and intelligent optimization,to tackle search problems in large and complex search spaces.However,these intelligent search algorithms were not designed to address completeness and optimality,and therefore commonly suffer from the problems such as local optimums or endless loops.Recent studies have used crowd-powered systems to address the complex problems that cannot be solved by machines on their own.While leveraging human intelligence in an AI system has been shown to be effective in making the system more reliable,whether using the power of the crowd can improve autonomous source search algorithms remains unanswered.To this end,we propose a crowd-powered source search approach enabling human-AI collaboration,which uses human intelligence as external supports to improve existing search algorithms and meanwhile reduces human efforts using AI predictions.Furthermore,we designed a crowd-powered prototype system and carried out an experiment with both experts and non-experts,to complete 200 source search scenarios(704 crowdsourcing tasks).Quantitative and qualitative analysis showed that the sourcing search algorithm enhanced by crowd could achieve both high effectiveness and efficiency.Our work provides valuable insights in human-AI collaborative system design. 展开更多
关键词 source search crowdsourcing crowd-powered systems crowd computing
原文传递
众包数据库综述 被引量:5
2
作者 柴成亮 李国良 +2 位作者 赵天宇 骆昱宇 于明鹤 《计算机学报》 EI CSCD 北大核心 2020年第5期948-972,共25页
现如今,很多数据处理与分析的任务仅仅依靠机器算法难以达到理想的效果.因此,众包技术应运而生,其利用群体的智慧来解决对于计算机而言比较难的问题.其中,众包平台(例如Amazon Mechanical Turk)为众包技术的应用提供了有力的支撑.平台... 现如今,很多数据处理与分析的任务仅仅依靠机器算法难以达到理想的效果.因此,众包技术应运而生,其利用群体的智慧来解决对于计算机而言比较难的问题.其中,众包平台(例如Amazon Mechanical Turk)为众包技术的应用提供了有力的支撑.平台上有成千上万的网络大众来为任务发布者解决问题.然而,对于任务发布者而言,其与众包平台交互是不方便的,因为平台会要求任务发布者设置很多参数甚至书写代码.所以研究者们借鉴传统数据库的思想,提出了众包数据库的概念,其封装了任务发布者、众包平台以及众包工人之间的复杂交互过程,为发布者提供友好的API.使发布者可以通过简单的类SQL语言与平台交互.在这篇综述中,我们首先介绍众包的概念;然后介绍设计众包数据库时需考虑的一些基本技术,例如真值推理、任务分配,代价优化等;接着我们介绍几种主流的众包数据库系统.此外,我们会介绍对于不同的数据库算子,包括选择、连接、排序等优化技术.最后我们会介绍该领域未来的研究方向与挑战. 展开更多
关键词 数据库 众包 查询优化 质量控制 成本控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部