期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
面向城市巡防的多无人机协同航迹规划 被引量:5
1
作者 潘楠 张淼寒 +4 位作者 韩宇航 向泓宇 刘海石 殷实 潘地林 《信息与控制》 CSCD 北大核心 2022年第4期411-422,共12页
无人机(UAV)因其低成本、高动态性与低部署性等优点被逐渐应用于城市巡防中。为提高异构无人机航迹规划的效率,首先建立了考虑无人机的任务执行率、航迹代价和撞击代价的多无人机任务规划模型。其次针对传统优化算法容易陷入局部最优解... 无人机(UAV)因其低成本、高动态性与低部署性等优点被逐渐应用于城市巡防中。为提高异构无人机航迹规划的效率,首先建立了考虑无人机的任务执行率、航迹代价和撞击代价的多无人机任务规划模型。其次针对传统优化算法容易陷入局部最优解,均匀性差等问题,将差分策略和Levy飞行策略引入乌鸦搜索算法中对算法进行改进,提出基于Levy飞行策略的混合差分乌鸦搜索算法(LDCSA),将剪枝处理和Logistic混沌映射机制加入快速遍历随机树(rapidly-exploring random trees,RRT)算法中,并通过改进的RRT算法进行航迹初始化。最后建立了3维的城市模型进行仿真实验,将所提算法与粒子群(PSO)、模拟退火(SA)、乌鸦搜索(CSA)算法对比,仿真结果表明该算法能提高全局收敛性与鲁棒性、缩短收敛时间、提高无人机执行覆盖率和减少能耗,在解决多无人机航迹规划问题中更具有优势。 展开更多
关键词 城市巡防 差分策略 Levy飞行策略 乌鸦搜索 快速遍历随机树算法 混沌映射
原文传递
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization
2
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
下载PDF
A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images 被引量:2
3
作者 S.Velliangiri J.Premalatha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期625-645,共21页
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin... Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods. 展开更多
关键词 Adaptive Rood Pattern search(ARPS) Improved crow search Algorithm(ICSA) Enhanced Convolutional Neural Network(ECNN) Viola Jones algorithm Speeded Up Robust Feature(SURF)
下载PDF
改进的乌鸦搜索算法在软件测试用例生成中的应用 被引量:2
4
作者 李清霞 《应用科技》 CAS 2021年第2期69-73,共5页
在软件测试中,为了更有效地生成测试用例,提出了一种改进的乌鸦搜索算法应用于软件测试中生成不同的测试用例。该算法采用柯西变异算子来自动生成具有较高变异的测试数据集,利用相对误差作为适应度函数来选择较好的测试用例。柯西变异... 在软件测试中,为了更有效地生成测试用例,提出了一种改进的乌鸦搜索算法应用于软件测试中生成不同的测试用例。该算法采用柯西变异算子来自动生成具有较高变异的测试数据集,利用相对误差作为适应度函数来选择较好的测试用例。柯西变异算子的引入可以防止算法陷入局部最优,进而增强了算法搜索的效率。实验结果表明,与其他启发式算法相比,该算法在测试用例变异方面具有更好的性能。 展开更多
关键词 软件测试 乌鸦搜索 柯西变异 变异敏感度 感知概率 收敛性 适应度 基准程序
下载PDF
Scale Invariant Feature Transform with Crow Optimization for Breast Cancer Detection 被引量:1
5
作者 A.Selvi S.Thilagamani 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2973-2987,共15页
Mammography is considered a significant image for accurate breast cancer detection.Content-based image retrieval(CBIR)contributes to classifying the query mammography image and retrieves similar mammographic images fr... Mammography is considered a significant image for accurate breast cancer detection.Content-based image retrieval(CBIR)contributes to classifying the query mammography image and retrieves similar mammographic images from the database.This CBIR system helps a physician to give better treatment.Local features must be described with the input images to retrieve similar images.Exist-ing methods are inefficient and inaccurate by failing in local features analysis.Hence,efficient digital mammography image retrieval needs to be implemented.This paper proposed reliable recovery of the mammographic image from the data-base,which requires the removal of noise using Kalman filter and scale-invariant feature transform(SIFT)for feature extraction with Crow Search Optimization-based the deep belief network(CSO-DBN).This proposed technique decreases the complexity,cost,energy,and time consumption.Training the proposed model using a deep belief network and validation is performed.Finally,the testing pro-cess gives better performance compared to existing techniques.The accuracy rate of the proposed work CSO-DBN is 0.9344,whereas the support vector machine(SVM)(0.5434),naïve Bayes(NB)(0.7014),Butterfly Optimization Algorithm(BOA)(0.8156),and Cat Swarm Optimization(CSO)(0.8852). 展开更多
关键词 SIFT Kalman filter crow search optimization deep neural network noise removal
下载PDF
Paddy Leaf Disease Detection Using an Optimized Deep Neural Network 被引量:2
6
作者 Shankaranarayanan Nalini Nagappan Krishnaraj +4 位作者 Thangaiyan Jayasankar Kalimuthu Vinothkumar Antony Sagai Francis Britto Kamalraj Subramaniam Chokkaligam Bharatiraja 《Computers, Materials & Continua》 SCIE EI 2021年第7期1117-1128,共12页
Precision Agriculture is a concept of farm management which makes use of IoT and networking concepts to improve the crop.Plant diseases are one of the underlying causes in the decrease in the number of quantity and qu... Precision Agriculture is a concept of farm management which makes use of IoT and networking concepts to improve the crop.Plant diseases are one of the underlying causes in the decrease in the number of quantity and quality of the farming crops.Recognition of diseases from the plant images is an active research topic which makes use of machine learning(ML)approaches.A novel deep neural network(DNN)classification model is proposed for the identification of paddy leaf disease using plant image data.Classification errors were minimized by optimizing weights and biases in the DNN model using a crow search algorithm(CSA)during both the standard pre-training and fine-tuning processes.This DNN-CSA architecture enables the use of simplistic statistical learning techniques with a decreased computational workload,ensuring high classification accuracy.Paddy leaf images were first preprocessed,and the areas indicative of disease were initially extracted using a k-means clustering method.Thresholding was then applied to eliminate regions not indicative of disease.Next,a set of features were extracted from the previously isolated diseased regions.Finally,the classification accuracy and efficiency of the proposed DNN-CSA model were verified experimentally and shown to be superior to a support vector machine with multiple cross-fold validations. 展开更多
关键词 Leaf classification paddy leaf deep learning metaheuristics optimization crow search algorithm
下载PDF
Multi-strategies Boosted Mutative Crow Search Algorithm for Global Tasks:Cases of Continuous and Discrete Optimization 被引量:1
7
作者 Weifeng Shan Hanyu Hu +4 位作者 Zhennao Cai Huiling Chen Haijun Liu Maofa Wang Yuntian Teng 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1830-1849,共20页
Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The orig... Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The original version of the CSA has simple parameters and moderate performance.However,it often tends to converge slowly or get stuck in a locally optimal region due to a missed harmonizing strategy during the exploitation and exploration phases.Therefore,strategies of mutation and crisscross are combined into CSA(CCMSCSA)in this paper to improve the performance and provide an efficient optimizer for various optimization problems.To verify the superiority of CCMSCSA,a set of comparisons has been performed reasonably with some well-established metaheuristics and advanced metaheuristics on 15 benchmark functions.The experimental results expose and verify that the proposed CCMSCSA has meaningfully improved the convergence speed and the ability to jump out of the local optimum.In addition,the scalability of CCMSCSA is analyzed,and the algorithm is applied to several engineering problems in a constrained space and feature selection problems.Experimental results show that the scalability of CCMSCSA has been significantly improved and can find better solutions than its competitors when dealing with combinatorial optimization problems.The proposed CCMSCSA performs well in almost all experimental results.Therefore,we hope the researchers can see it as an effective method for solving constrained and unconstrained optimization problems. 展开更多
关键词 crow search algorithm Feature selection Global optimization Metaheuristic algorithms Engineering problems Bionic algorithm
原文传递
基于乌鸦搜索的隐私保护聚类算法
8
作者 夏雪薇 张磊 +1 位作者 李晶 邓雨康 《计算机应用研究》 CSCD 北大核心 2023年第12期3778-3783,共6页
针对基于差分隐私的K-means聚类存在数据效用差的问题,基于乌鸦搜索和轮廓系数提出了一个隐私保护的聚类算法(privacy preserving clustering algorithm based on crow search, CS-PCA)。该算法一方面利用轮廓系数对每次迭代中每个簇的... 针对基于差分隐私的K-means聚类存在数据效用差的问题,基于乌鸦搜索和轮廓系数提出了一个隐私保护的聚类算法(privacy preserving clustering algorithm based on crow search, CS-PCA)。该算法一方面利用轮廓系数对每次迭代中每个簇的聚类效果进行评估,根据聚类效果添加不同数量的噪声,并利用聚类合并思想降低噪声对聚类的影响;另一方面利用乌鸦搜索对差分隐私的K-means隐私保护聚类算法中初始质心的选择进行优化,防止算法陷入局部最优。实验结果表明,CS-PCA算法的聚类有效性更高,并且同样适用于大规模数据。从整体上看,随着隐私预算的不断增大,CS-PCA算法的F-measure值分别比DP-KCCM和PADC算法高了0~281.3312%和4.5876%~470.3704%。在相同的隐私预算下,CS-PCA算法在绝大多数情况下聚类结果可用性优于对比算法。 展开更多
关键词 乌鸦搜索 轮廓系数 K-MEANS聚类 差分隐私 最优初始质心
下载PDF
Scale Invariant Feature Transform with Crow Optimization for Breast Cancer Detection
9
作者 A.Selvi S.Thilagaman 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1257-1272,共16页
Mammography is considered a significant image for accurate breast cancer detection.Content-based image retrieval(CBIR)contributes to classifying the query mammography image and retrieves similar mammographic images fro... Mammography is considered a significant image for accurate breast cancer detection.Content-based image retrieval(CBIR)contributes to classifying the query mammography image and retrieves similar mammographic images from the database.This CBIR system helps a physician to give better treatment.Local features must be described with the input images to retrieve similar images.Exist-ing methods are inefficient and inaccurate by failing in local features analysis.Hence,efficient digital mammography image retrieval needs to be implemented.This paper proposed reliable recovery of the mammographic image from the data-base,which requires the removal of noise using Kalmanfilter and scale-invariant feature transform(SIFT)for feature extraction with Crow Search Optimization-based the deep belief network(CSO-DBN).This proposed technique decreases the complexity,cost,energy,and time consumption.Training the proposed model using a deep belief network and validation is performed.Finally,the testing pro-cess gives better performance compared to existing techniques.The accuracy rate of the proposed work CSO-DBN is 0.9344,whereas the support vector machine(SVM)(0.5434),naïve Bayes(NB)(0.7014),Butterfly Optimization Algorithm(BOA)(0.8156),and Cat Swarm Optimization(CSO)(0.8852). 展开更多
关键词 SIFT Kalmanfilter crow search optimization deep neural network noise removal
下载PDF
Selective Mapping Scheme for Universal Filtered Multicarrier
10
作者 Akku Madhusudhan Sudhir Kumar Sharma 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1273-1282,共10页
The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a c... The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER). 展开更多
关键词 -Universalfiltered multicarrier(UFMC) selective mapping(SLM) metaheuristic optimization crow search algorithm(CSA) bit error rate(BER)
下载PDF
Improved Interleaved Single-Ended Primary Inductor-Converter forSingle-Phase Grid-Connected System
11
作者 T.J.Thomas Thangam K.Muthu Vel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3459-3478,共20页
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr... The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed. 展开更多
关键词 Improved interleaved DC-DC SEPIC converter crow search algorithm PI controller voltage source inverter PV array single phase grid
下载PDF
A new two-degree of freedom combined PID controller for automatic generation control of a wind integrated interconnected power system 被引量:1
12
作者 Appala Naidu Karanam Binod Shaw 《Protection and Control of Modern Power Systems》 2022年第1期300-315,共16页
Frequency control of an interconnected power system in the presence of wind integration is complex since wind speed/power variations also affect system frequency in addition to load perturbations.Therefore,improving e... Frequency control of an interconnected power system in the presence of wind integration is complex since wind speed/power variations also affect system frequency in addition to load perturbations.Therefore,improving existing control schemes is necessary to maintain a stable frequency in such complex power system scenarios.In this paper,a new 2-degree of freedom combined proportional-integral and derivative control scheme is applied to a wind integrated interconnected power system.In designing the controller,several inputs used for a secondary frequency control loop are considered along with the merits of the existing controllers.The combined controller provides better control action than existing controllers in the presence of wind as is evidenced by the wide variety of results pre-sented.For tuning of the controller gains,a crow search optimization algorithm(CRSOA)is used.Results are obtained via the MATLAB/Simulink software. 展开更多
关键词 Load frequency control 2-DOF-PID controller crow search optimization algorithm
原文传递
Improved region growing segmentation for breast cancer detection:progression of optimized fuzzy classifier
13
作者 Rajeshwari S.Patil Nagashettappa Biradar 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期181-205,共25页
Purpose-Breast cancer is one of the most common malignant tumors in women,which badly have an effect on women’s physical and psychological health and even danger to life.Nowadays,mammography is considered as a fundam... Purpose-Breast cancer is one of the most common malignant tumors in women,which badly have an effect on women’s physical and psychological health and even danger to life.Nowadays,mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer.Though,due to the intricate formation of mammogram images,it is reasonably hard for practitioners to spot breast cancer features.Design/methodology/approach-Breast cancer is one of the most common malignant tumors in women,which badly have an effect on women’s physical and psychological health and even danger to life.Nowadays,mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer.Though,due to the intricate formation of mammogram images,it is reasonably hard for practitioners to spot breast cancer features.Findings-The performance analysis was done for both segmentation and classification.From the analysis,the accuracy of the proposed IAP-CSA-based fuzzy was 41.9%improved than the fuzzy classifier,2.80%improved than PSO,WOA,and CSA,and 2.32%improved than GWO-based fuzzy classifiers.Additionally,the accuracy of the developed IAP-CSA-fuzzy was 9.54%better than NN,35.8%better than SVM,and 41.9%better than the existing fuzzy classifier.Hence,it is concluded that the implemented breast cancer detection model was efficient in determining the normal,benign and malignant images.Originality/value-This paper adopts the latest Improved Awareness Probability-based Crow Search Algorithm(IAP-CSA)-based Region growing and fuzzy classifier for enhancing the breast cancer detection of mammogram images,and this is the first work that utilizes this method. 展开更多
关键词 MAMMOGRAM Breast cancer detection Optimized region growing Membership optimized-fuzzy classifier Improved crow search algorithm
原文传递
基于改进乌鸦算法和ESN神经网络的短期风电功率预测 被引量:28
14
作者 琚垚 祁林 刘帅 《电力系统保护与控制》 EI CSCD 北大核心 2019年第4期58-64,共7页
精确的短期风电功率预测对于提升电力系统经济稳定运行十分重要。为了克服传统的神经网络在参数选取中容易受主观因素影响和陷入局部最优的不足,提出一种基于改进乌鸦算法(ICSA)优化回声状态神经网络(ESN)参数的短期风电功率组合预测方... 精确的短期风电功率预测对于提升电力系统经济稳定运行十分重要。为了克服传统的神经网络在参数选取中容易受主观因素影响和陷入局部最优的不足,提出一种基于改进乌鸦算法(ICSA)优化回声状态神经网络(ESN)参数的短期风电功率组合预测方法。在算法寻优初期引入Lévy飞行机制增强搜索效率,而在迭代后期加入高斯函数,对进化后的全部轨迹进行相应的调整,保证算法的全局寻优和逐次逼近能力;通过改进的CSA算法对ESN神经网络输出层连接权值矩阵进行优化以提高网络的训练效率。最后利用两组实验数据对预测模型进行了有效性验证,结果表明,所提算法能有效应对风电功率时序的随机性和不确定性特征,具有更高的建模精度和更快的收敛速度。 展开更多
关键词 乌鸦算法 Lévy飞行 ESN神经网络 高斯函数 风电功率预测
下载PDF
基于全位姿测量优化的机器人精度研究 被引量:28
15
作者 温秀兰 康传帅 +3 位作者 宋爱国 乔贵方 王东霞 韩亚丽 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第7期81-89,共9页
随着机器人在高端制造业、航空航天、医疗等领域广泛应用,对其全位姿精度要求越来越高。采用激光跟踪仪对机器人末端执行器进行全位姿实测,研究基于几何参数标定的机器人精度提升方法。首先,建立了串联机器人(MDH)模型;其次,提出了基于... 随着机器人在高端制造业、航空航天、医疗等领域广泛应用,对其全位姿精度要求越来越高。采用激光跟踪仪对机器人末端执行器进行全位姿实测,研究基于几何参数标定的机器人精度提升方法。首先,建立了串联机器人(MDH)模型;其次,提出了基于拟随机序列产生初始位置的改进乌鸦搜索算法(ICSA)用于标定机器人几何参数,建立了用ICSA标定机器人几何参数目标函数的数学模型,给出了标定的详细步骤。最后,对Staubli Tx60工业机器人进行了实测标定,结果证实:采用提出方法能够快速标定机器人几何参数,标定后的机器人在工作空间内随机选择的测试点其平均绝对位置和姿态误差由标定前的0. 309 6 mm和0. 232 2°减小为标定后的0. 092 6 mm和0. 082 9°,精度大幅提升。该方法简单易实现,效率高,鲁棒性强,稳定性好,适宜于在位置和姿态均有高精度要求的机器人中推广应用。 展开更多
关键词 机器人 全位姿测量 精度 几何参数标定 改进乌鸦搜索算法 拟随机序列
下载PDF
基于乌鸦搜索算法的孤岛微网多目标优化调度 被引量:26
16
作者 黄景光 陈波 +3 位作者 林湘宁 吴巍 于楠 叶元 《高压电器》 CAS CSCD 北大核心 2020年第1期162-168,共7页
为促进孤岛微网中可再生能源的消纳,减小负荷峰谷差。文中在孤岛微网中引入价格型需求响应,以微网运行成本最低和柴油发电机出力最少为目标,综合考虑功率平衡、抽水蓄能机组启停与工况转换等约束条件,构建了含风电、抽水蓄能和柴油发电... 为促进孤岛微网中可再生能源的消纳,减小负荷峰谷差。文中在孤岛微网中引入价格型需求响应,以微网运行成本最低和柴油发电机出力最少为目标,综合考虑功率平衡、抽水蓄能机组启停与工况转换等约束条件,构建了含风电、抽水蓄能和柴油发电机的孤岛微网多目标优化调度模型,并采用乌鸦搜索算法进行求解。仿真结果表明:在孤岛微网中引入价格型需求响应能有效削减负荷峰谷差,经济效益显著。与粒子群优化算法相比,乌鸦搜素算法在收敛速度和全局寻优的能力上具有明显优势。 展开更多
关键词 乌鸦搜索算法 需求响应 孤岛微网 优化调度
下载PDF
正弦余弦指引的乌鸦搜索算法研究 被引量:19
17
作者 肖子雅 刘升 +1 位作者 韩斐斐 于建芳 《计算机工程与应用》 CSCD 北大核心 2019年第21期52-59,共8页
乌鸦搜索算法模拟乌鸦觅食行为对个体位置进行更新与搜索,为降低基本乌鸦搜索位置更新策略本身存在的盲目性,将正弦余弦作为局部优化算子嵌入到基本算法中,提出了正弦余弦指引的乌鸦搜索算法。该算法通过正弦余弦操作使每一个乌鸦个体... 乌鸦搜索算法模拟乌鸦觅食行为对个体位置进行更新与搜索,为降低基本乌鸦搜索位置更新策略本身存在的盲目性,将正弦余弦作为局部优化算子嵌入到基本算法中,提出了正弦余弦指引的乌鸦搜索算法。该算法通过正弦余弦操作使每一个乌鸦个体都可以充分吸收自身与最优个体的位置差信息,有效指引乌鸦个体沿最优值方向趋近最优值,改善算法的收敛效果和寻优精度。并对一系列测试函数进行寻优实验,实验结果表明该改进算法性能良好。 展开更多
关键词 乌鸦搜索算法 正弦余弦算法 多模态函数
下载PDF
基于变因子加权学习与邻代维度交叉策略的改进CSA算法 被引量:19
18
作者 赵世杰 高雷阜 +1 位作者 于冬梅 徒君 《电子学报》 EI CAS CSCD 北大核心 2019年第1期40-48,共9页
针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低、局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长... 针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低、局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长度),利用多个体的变因子加权学习机制保证子代个体同时继承跟随乌鸦与上代最优个体的位置信息以避免单个体继承的过快种群同化并减小陷入局部极值的风险;同时构建历史最优个体的邻代维度交叉策略,并按维度绝对差异大的优先替换原则更新最优个体位置,以保留历代最优维度信息并提高算法的局部极值逃逸能力.数值实验结果分别验证了模型参数对CSA算法性能的一定影响,加权学习因子不同递变形式对ICSA算法性能改善的有效性与差异性以及改进算法的优越寻优性能. 展开更多
关键词 智能优化算法 乌鸦搜索算法 变因子加权学习机制 邻代维度交叉策略 基准测试函数
下载PDF
乌鸦搜索算法的改进及其在工程约束优化问题中的应用 被引量:17
19
作者 汪逸晖 高亮 《计算机集成制造系统》 EI CSCD 北大核心 2021年第7期1871-1883,共13页
针对工程约束优化求解困难且存在优化结果不符合约束等问题,本文研究了一种元启发式算法——乌鸦搜索算法(CSA)。系统介绍了乌鸦搜索算法的基本原理、优化步骤以及与其他优化算法相比的特点。并针对该算法在求解复杂优化问题时的不足,... 针对工程约束优化求解困难且存在优化结果不符合约束等问题,本文研究了一种元启发式算法——乌鸦搜索算法(CSA)。系统介绍了乌鸦搜索算法的基本原理、优化步骤以及与其他优化算法相比的特点。并针对该算法在求解复杂优化问题时的不足,引入动态感知概率、莱维飞行策略以及变异更新机制,提出了CSA的改进算法(MCSA)。实验测试证明,MCSA在搜索精度、稳定性和搜索效率方面表现优秀。最后,针对约束优化问题,将可行性优势(FAD)准则融入MCSA,构建了约束处理机制,通过3个工程约束实例验证了MCSA的可行性与优越性。 展开更多
关键词 元启发式算法 乌鸦搜索算法 约束优化问题 动态感知概率 莱维飞行策略 变异更新机制
下载PDF
基于乌鸦搜索优化BP神经网络的入侵检测方法 被引量:13
20
作者 蓝吕盈 唐向红 +1 位作者 顾鑫 陆见光 《激光与光电子学进展》 CSCD 北大核心 2021年第6期148-155,共8页
为了提高入侵检测系统的准确率,提出一种基于乌鸦搜索算法的反向传播(CSA-BP)神经网络模型。BP神经网络是解决非线性问题的重要方法,但是其预测能力容易受到初始参数的影响。针对这一问题,将相对百分误差作为模型的目标函数,通过乌鸦搜... 为了提高入侵检测系统的准确率,提出一种基于乌鸦搜索算法的反向传播(CSA-BP)神经网络模型。BP神经网络是解决非线性问题的重要方法,但是其预测能力容易受到初始参数的影响。针对这一问题,将相对百分误差作为模型的目标函数,通过乌鸦搜索算法极强的全局搜索能力找到最优权值和阈值。然后,利用5组标准的数据集对CSA-BP模型进行验证。最后,将CSA-BP算法用于入侵检测系统,结果表明,该算法使入侵检测系统准确率更高,达到了96.6%,且加快了收敛速度。 展开更多
关键词 图像处理 入侵检测 反向传播神经网络 乌鸦搜索算法 参数优化
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部