以戊二醛为交联剂,采用反相悬浮法合成了壳聚糖交联微球,研究了该微球对Ni2+的吸附性能及其重复使用性。结果表明,壳聚糖交联微球对Ni2+的吸附条件是25℃时,p H 7.0,在50 m L质量浓度为300 mg/L Ni2+溶液中,投加0.05 g吸附剂,吸附2 h,...以戊二醛为交联剂,采用反相悬浮法合成了壳聚糖交联微球,研究了该微球对Ni2+的吸附性能及其重复使用性。结果表明,壳聚糖交联微球对Ni2+的吸附条件是25℃时,p H 7.0,在50 m L质量浓度为300 mg/L Ni2+溶液中,投加0.05 g吸附剂,吸附2 h,吸附量为45.65 mg/g。该微球经0.1 mol/L盐酸解吸后可再生,重复使用7次,吸附量仍可达原来的81.9%。微球良好的再生性显著降低了处理成本,提高了处理效果,减少了二次污染。展开更多
Microparticles with diameter within the range of Dn = 26-38 μm were prepared from functional poly(ester- anhydride)s with different amount of allyl groups in the side chains, using emulsion solvent evaporation tech...Microparticles with diameter within the range of Dn = 26-38 μm were prepared from functional poly(ester- anhydride)s with different amount of allyl groups in the side chains, using emulsion solvent evaporation technique. Porous structure was obtained as the effect of photocrosslinking of aUyl groups. 2,2-Dimetoxy-2-phenylacetophenone (DMPA) (0.5 wt%-10 wt%) was used as a photoinitiator. The crosslinking was carried out by UV irradiation during the solvent evaporation. Effectiveness of the crosslinking was characterized by the content of insoluble part of samples and it was in the range of 18%-75%. Porosity of microparticles (in the range of 76%-88%) depended on the functionality of poly(ester- anhydride)s and amount of the photoinitiator used. The most porous particles were obtained with use of 0.5 wt% of DMPA. Their flow ability expressed by Carr's index was excellent, and their theoretical mass mean aerodynamic diameters were acceptable for use in pulmonary drug delivery. The most porous particles were loaded with p-nitroaniline, theophilline or doxycycline. The loading efficiencies of drugs in porous microspheres were higher compared to nonporous ones. The porosity of loaded microparticles was slightly decreased, however their flow ability was still very good.展开更多
文摘Microparticles with diameter within the range of Dn = 26-38 μm were prepared from functional poly(ester- anhydride)s with different amount of allyl groups in the side chains, using emulsion solvent evaporation technique. Porous structure was obtained as the effect of photocrosslinking of aUyl groups. 2,2-Dimetoxy-2-phenylacetophenone (DMPA) (0.5 wt%-10 wt%) was used as a photoinitiator. The crosslinking was carried out by UV irradiation during the solvent evaporation. Effectiveness of the crosslinking was characterized by the content of insoluble part of samples and it was in the range of 18%-75%. Porosity of microparticles (in the range of 76%-88%) depended on the functionality of poly(ester- anhydride)s and amount of the photoinitiator used. The most porous particles were obtained with use of 0.5 wt% of DMPA. Their flow ability expressed by Carr's index was excellent, and their theoretical mass mean aerodynamic diameters were acceptable for use in pulmonary drug delivery. The most porous particles were loaded with p-nitroaniline, theophilline or doxycycline. The loading efficiencies of drugs in porous microspheres were higher compared to nonporous ones. The porosity of loaded microparticles was slightly decreased, however their flow ability was still very good.