期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
局部全局特征耦合与交叉尺度注意的医学图像融合 被引量:2
1
作者 张炯 王丽芳 +3 位作者 蔺素珍 秦品乐 米嘉 刘阳 《计算机工程》 CAS CSCD 北大核心 2023年第3期238-247,共10页
现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN... 现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN)和Transformer双分支网络分别提取图像的局部特征与全局表示。在不同尺度下,通过特征耦合模块将CNN分支的局部特征嵌入Transformer分支的全局特征表示中,最大程度地结合互补特征,同时引入交叉尺度注意模块实现对多尺度特征表示的有效利用。编码器提取待融合原始图像的局部、全局以及多尺度特征表示,根据融合规则融合不同源图像的特征表示后再输入到解码器中生成融合图像。实验结果表明,与CBF、PAPCNN、IFCNN、DenseFuse和U2Fusion方法相比,该方法在特征互信息、空间频率、边缘信息传递因子、结构相似度、感知图像融合质量这5个评价指标上分别平均提高6.29%、3.58%、29.01%、5.34%、5.77%,融合图像保留了更清晰的纹理细节和更高的对比度,便于疾病的诊断与治疗。 展开更多
关键词 医学图像融合 编码器-解码器网络 Transformer网络 特征耦合 交叉尺度注意
下载PDF
基于注意力和上下文的多尺度图像背景下的小目标检测方法
2
作者 李容光 杨梦龙 《现代信息科技》 2023年第5期1-6,12,共7页
在多尺度多目标的背景下,小目标由于像素少、提取特征困难,其检测精度远远低于大中目标。文章通过使用离散自注意力提取跨尺度的全局的上下文背景信息,使用跨尺度通道注意力和尺度注意力来增强模型的尺度敏感性,捕捉到更多不同的、更丰... 在多尺度多目标的背景下,小目标由于像素少、提取特征困难,其检测精度远远低于大中目标。文章通过使用离散自注意力提取跨尺度的全局的上下文背景信息,使用跨尺度通道注意力和尺度注意力来增强模型的尺度敏感性,捕捉到更多不同的、更丰富的物体-物体、背景-物体信息,使得每一层特征层都是一个跨空间和跨尺度的拥有更丰富特征信息的特征层,从而提高在多尺度背景下小目标检测的效果。在COCO数据集上,本算法的APs高于基准retinanet最高达2.9,在DIOR数据集上mAP能够达到69.0,优于该数据集上最优算法,同时能够维持自己单阶段的速度。 展开更多
关键词 目标检测 小目标检测 离散自注意力 跨尺度注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部