A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with ...A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.展开更多
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure.Seizure signals are highly chaotic compared to normal brain sign...Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure.Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings.In the current seizure detection and classification landscape,most models primarily focus on binary classification—distinguishing between seizure and non-seizure states.While effective for basic detection,these models fail to address the nuanced stages of seizures and the intervals between them.Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure alert system.This granularity is essential for improving patient-specific interventions and developing proactive seizure management strategies.This study addresses this gap by proposing a novel AI-based approach for seizure stage classification using a Deep Convolutional Neural Network(DCNN).The developed model goes beyond traditional binary classification by categorizing EEG recordings into three distinct classes,thus providing a more detailed analysis of seizure stages.To enhance the model’s performance,we have optimized the DCNN using two advanced techniques:the Stochastic Gradient Algorithm(SGA)and the evolutionary Genetic Algorithm(GA).These optimization strategies are designed to fine-tune the model’s accuracy and robustness.Moreover,k-fold cross-validation ensures the model’s reliability and generalizability across different data sets.Trained and validated on the Bonn EEG data sets,the proposed optimized DCNN model achieved a test accuracy of 93.2%,demonstrating its ability to accurately classify EEG signals.In summary,the key advancement of the present research lies in addressing the limitations of existing models by providing a more detailed seizure classification system,thus potentially enhancing the effectiveness of real-time seizure prediction and management systems in clinical settings.With its inherent classifica展开更多
基金jointly sponsored by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China(No.41374078)
文摘A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2024R809).
文摘Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure.Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings.In the current seizure detection and classification landscape,most models primarily focus on binary classification—distinguishing between seizure and non-seizure states.While effective for basic detection,these models fail to address the nuanced stages of seizures and the intervals between them.Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure alert system.This granularity is essential for improving patient-specific interventions and developing proactive seizure management strategies.This study addresses this gap by proposing a novel AI-based approach for seizure stage classification using a Deep Convolutional Neural Network(DCNN).The developed model goes beyond traditional binary classification by categorizing EEG recordings into three distinct classes,thus providing a more detailed analysis of seizure stages.To enhance the model’s performance,we have optimized the DCNN using two advanced techniques:the Stochastic Gradient Algorithm(SGA)and the evolutionary Genetic Algorithm(GA).These optimization strategies are designed to fine-tune the model’s accuracy and robustness.Moreover,k-fold cross-validation ensures the model’s reliability and generalizability across different data sets.Trained and validated on the Bonn EEG data sets,the proposed optimized DCNN model achieved a test accuracy of 93.2%,demonstrating its ability to accurately classify EEG signals.In summary,the key advancement of the present research lies in addressing the limitations of existing models by providing a more detailed seizure classification system,thus potentially enhancing the effectiveness of real-time seizure prediction and management systems in clinical settings.With its inherent classifica