Precision and low damage grinding of aviation optical elements can effectively improve the overall processing efficiency.The mechanism of high-speed cross scuffing of multiple abrasive particles has become an importan...Precision and low damage grinding of aviation optical elements can effectively improve the overall processing efficiency.The mechanism of high-speed cross scuffing of multiple abrasive particles has become an important factor affecting the forming quality of workpiece.Interaction of abrasive trajectory determines machined surface and subsurface morphology and damage.According to the relative motion trajectory of wear particles on the workpiece surface,a theoretical model of the trochoidal trajectory intersection angle is proposed.High-speed scratches with different cross angles are experimentally obtained to explore the interference mechanism and damage accumulation of cross scratches.The results indicate that the Crack system I and Crack system II,produced by the two cross scratches,are mainly based on the stress principle and the strength principle,respectively.An increase in the damage radius is observed with a decrease in the crossing angle.Furthermore,as the duration of the normal cutting force decomposition curve at the entrance/exit of the intersection increases,the half-peak width also increases.The accumulation of cross-scratch damage promotes the propagation of deep subsurface lateral and median cracks.In other words,damage accumulation and interference mechanism formed by the cross scratches increase the longitudinal depth and lateral length of the damage.展开更多
Incremental forming process is recently developed to form tubular parts.The fabrication cost and accuracy could be optimized if the effects of process parameters and the optimum values are specified.The aim of this re...Incremental forming process is recently developed to form tubular parts.The fabrication cost and accuracy could be optimized if the effects of process parameters and the optimum values are specified.The aim of this research is using incremental forming of copper tubes to convert a circular tube into a square cross-sectional part.An experimental setup,consisting of a spherical forming punch and a fixture for clamping the tube is designed.The forming punch movement is controlled by a CNC machine.Full factorial design of experiments is carried out in order to determine the effects of process parameters including linear velocity,radial feed,and axial feed of the tool on the thinning ratio and the maximum outer diameter of the square cross-sectional parts.Results show that the radial feed has the major influence on the thinning ratio,while the axial feed plays the major role for the final profile.Increase of radial feed results in higher thinning ratio,and decrease of axial feed results in better shape conformity.Linear velocity does not have a significant effect on thinning ratio.Regression models are also given for predicting the determined responses.展开更多
As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour e...As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51875406 and 51805365)Natural Science Foundation of Tianjin,China(No.19JCQNJC04000)。
文摘Precision and low damage grinding of aviation optical elements can effectively improve the overall processing efficiency.The mechanism of high-speed cross scuffing of multiple abrasive particles has become an important factor affecting the forming quality of workpiece.Interaction of abrasive trajectory determines machined surface and subsurface morphology and damage.According to the relative motion trajectory of wear particles on the workpiece surface,a theoretical model of the trochoidal trajectory intersection angle is proposed.High-speed scratches with different cross angles are experimentally obtained to explore the interference mechanism and damage accumulation of cross scratches.The results indicate that the Crack system I and Crack system II,produced by the two cross scratches,are mainly based on the stress principle and the strength principle,respectively.An increase in the damage radius is observed with a decrease in the crossing angle.Furthermore,as the duration of the normal cutting force decomposition curve at the entrance/exit of the intersection increases,the half-peak width also increases.The accumulation of cross-scratch damage promotes the propagation of deep subsurface lateral and median cracks.In other words,damage accumulation and interference mechanism formed by the cross scratches increase the longitudinal depth and lateral length of the damage.
文摘Incremental forming process is recently developed to form tubular parts.The fabrication cost and accuracy could be optimized if the effects of process parameters and the optimum values are specified.The aim of this research is using incremental forming of copper tubes to convert a circular tube into a square cross-sectional part.An experimental setup,consisting of a spherical forming punch and a fixture for clamping the tube is designed.The forming punch movement is controlled by a CNC machine.Full factorial design of experiments is carried out in order to determine the effects of process parameters including linear velocity,radial feed,and axial feed of the tool on the thinning ratio and the maximum outer diameter of the square cross-sectional parts.Results show that the radial feed has the major influence on the thinning ratio,while the axial feed plays the major role for the final profile.Increase of radial feed results in higher thinning ratio,and decrease of axial feed results in better shape conformity.Linear velocity does not have a significant effect on thinning ratio.Regression models are also given for predicting the determined responses.
基金This work is supported by the National Science and Technology Major Project of China(Grant No.2015ZX04005006)the Science and Technology Major Project of Zhongshan City,China(Grant Nos.2016F2FC0006 and 2018A10018).
文摘As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.