目的观察以胶原缓释重组人骨形成蛋白2(recom b inan t hum an bone m orphogenetic prote in 2,rhBM P-2)复合骨髓间充质干细胞(m arrow m esenchym a l stem ce lls,M SC s)及珊瑚构建的组织工程骨修复兔颅骨极限缺损的能力。方法新...目的观察以胶原缓释重组人骨形成蛋白2(recom b inan t hum an bone m orphogenetic prote in 2,rhBM P-2)复合骨髓间充质干细胞(m arrow m esenchym a l stem ce lls,M SC s)及珊瑚构建的组织工程骨修复兔颅骨极限缺损的能力。方法新西兰大白兔40只,制备颅骨极限缺损,按植入的修复物不同随机分为5组,每组8只。Ⅰ组:自体髂骨,为阳性对照组;Ⅱ组:珊瑚,为阴性对照组;Ⅲ组:rhBM P-2+珊瑚;Ⅳ组:胶原+rhBM P-2+珊瑚;Ⅴ组:M SC s+胶原+rhBM P-2+珊瑚。将其分别植入兔颅骨极限缺损处,术后8、16周行大体观察、X线片、HE染色及M asson三色染色法观察比较骨缺损修复的情况。结果术后Ⅴ组材料与Ⅰ组修复颅骨极限缺损的效果相近,缺损区大体标本可见骨样组织充填,硬度与周边骨质相近,并与周边骨质形成明显骨融合;X线阻射程度高,16周时达80.45%±2.52%;组织学观察为板层状结构的新骨组织,空白孔隙区较少。Ⅳ组修复效果次之,Ⅲ组材料成骨能力较弱,Ⅱ组大部为半透明的纤维薄膜,缺损区界限清晰。结论胶原是rhBM P-2适宜的缓释载体,胶原及M SC s对促进复合支架材料修复骨缺损有重要意义。以M SC s+胶原+rhBM P-2+珊瑚构建的组织工程骨可成为一种良好的骨缺损修复材料。展开更多
The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects ...The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy.展开更多
文摘目的观察以胶原缓释重组人骨形成蛋白2(recom b inan t hum an bone m orphogenetic prote in 2,rhBM P-2)复合骨髓间充质干细胞(m arrow m esenchym a l stem ce lls,M SC s)及珊瑚构建的组织工程骨修复兔颅骨极限缺损的能力。方法新西兰大白兔40只,制备颅骨极限缺损,按植入的修复物不同随机分为5组,每组8只。Ⅰ组:自体髂骨,为阳性对照组;Ⅱ组:珊瑚,为阴性对照组;Ⅲ组:rhBM P-2+珊瑚;Ⅳ组:胶原+rhBM P-2+珊瑚;Ⅴ组:M SC s+胶原+rhBM P-2+珊瑚。将其分别植入兔颅骨极限缺损处,术后8、16周行大体观察、X线片、HE染色及M asson三色染色法观察比较骨缺损修复的情况。结果术后Ⅴ组材料与Ⅰ组修复颅骨极限缺损的效果相近,缺损区大体标本可见骨样组织充填,硬度与周边骨质相近,并与周边骨质形成明显骨融合;X线阻射程度高,16周时达80.45%±2.52%;组织学观察为板层状结构的新骨组织,空白孔隙区较少。Ⅳ组修复效果次之,Ⅲ组材料成骨能力较弱,Ⅱ组大部为半透明的纤维薄膜,缺损区界限清晰。结论胶原是rhBM P-2适宜的缓释载体,胶原及M SC s对促进复合支架材料修复骨缺损有重要意义。以M SC s+胶原+rhBM P-2+珊瑚构建的组织工程骨可成为一种良好的骨缺损修复材料。
基金King Saud University,through Vice Deanship of Research Chairs
文摘The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy.