The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with t...The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition, the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, and buckling time is given.展开更多
Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines...Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength, which are under different conditions, including pure bending and bending combined with internal pressure. Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes. In parametric analysis, a series of parameters,including pipe geometrical dimension, pipe material properties and internal pressure, were selected to study their influences on the critical bending moment, critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg–Osgood constitutive model. Results showed that geometrical dimensions, material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress, which have different, even reverse effects on the critical compressive strain. Based on these analyses, more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bendingconditions, which provide theoretical methods for highstrength pipeline engineering.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10472076).
文摘The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition, the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, and buckling time is given.
基金supported by the National ScienceTechnology Support Plan Projects of China, under Award No. 2015BAK16B02
文摘Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength, which are under different conditions, including pure bending and bending combined with internal pressure. Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes. In parametric analysis, a series of parameters,including pipe geometrical dimension, pipe material properties and internal pressure, were selected to study their influences on the critical bending moment, critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg–Osgood constitutive model. Results showed that geometrical dimensions, material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress, which have different, even reverse effects on the critical compressive strain. Based on these analyses, more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bendingconditions, which provide theoretical methods for highstrength pipeline engineering.