The relationship between the critical buckling loads of functionally graded material (FGM) Levinson beams (LBs) and those of the corresponding homogeneous Euler-Bernoulli beams (HEBBs) is investigated. Propertie...The relationship between the critical buckling loads of functionally graded material (FGM) Levinson beams (LBs) and those of the corresponding homogeneous Euler-Bernoulli beams (HEBBs) is investigated. Properties of the beam are assumed to vary continuously in the depth direction. The governing equations of the FGM beam are derived based on the Levinson beam theory, in which a quadratic variation of the transverse shear strain through the depth is included. By eliminating the axial displacement as well as the rotational angle in the governing equations, an ordinary differential equation in terms of the deflection of the FGM LBs is derived, the form of which is the same as that of HEBBs except for the definition of the load parameter. By solving the eigenvalue problem of ordinary differential equations under different boundary conditions clamped (C), simply-supported (S), roller (R) and free (F) edges combined, a uniform analytical formulation of buckling loads of FGM LBs with S-S, C-C, C-F, C-R and S-R edges is presented for those of HEBBs with the same boundary conditions. For the C-S beam the above-mentioned equation does not hold. Instead, a transcendental equation is derived to find the critical buckling load for the FGM LB which is similar to that for HEBB with the same ends. The significance of this work lies in that the solution of the critical buckling load of a FGM LB can be reduced to that of the HEBB and calculation of three constants whose values only depend upon the through- the-depth gradient of the material properties and the geometry of the beam. So, a homogeneous and classical expression for the buckling solution of FGM LBs is accomplished.展开更多
The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with t...The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition, the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, and buckling time is given.展开更多
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘The relationship between the critical buckling loads of functionally graded material (FGM) Levinson beams (LBs) and those of the corresponding homogeneous Euler-Bernoulli beams (HEBBs) is investigated. Properties of the beam are assumed to vary continuously in the depth direction. The governing equations of the FGM beam are derived based on the Levinson beam theory, in which a quadratic variation of the transverse shear strain through the depth is included. By eliminating the axial displacement as well as the rotational angle in the governing equations, an ordinary differential equation in terms of the deflection of the FGM LBs is derived, the form of which is the same as that of HEBBs except for the definition of the load parameter. By solving the eigenvalue problem of ordinary differential equations under different boundary conditions clamped (C), simply-supported (S), roller (R) and free (F) edges combined, a uniform analytical formulation of buckling loads of FGM LBs with S-S, C-C, C-F, C-R and S-R edges is presented for those of HEBBs with the same boundary conditions. For the C-S beam the above-mentioned equation does not hold. Instead, a transcendental equation is derived to find the critical buckling load for the FGM LB which is similar to that for HEBB with the same ends. The significance of this work lies in that the solution of the critical buckling load of a FGM LB can be reduced to that of the HEBB and calculation of three constants whose values only depend upon the through- the-depth gradient of the material properties and the geometry of the beam. So, a homogeneous and classical expression for the buckling solution of FGM LBs is accomplished.
基金Project supported by the National Natural Science Foundation of China (No. 10472076).
文摘The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition, the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, and buckling time is given.