The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new research...The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.展开更多
The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundan...The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundancy and extra information acquired. The fusion of redundant information can reduce the overall uncertainty and thus helps to provide information specified more precisely. Several sensors providing redundant information can also be used to increase reliability in the case of error, omission or failure of sensors. The combination operators are exponential and are more complex in terms of calculation;the Dempster-Shafer operator is exponential for more than three (3) information sources?[1] [2]. Our work focuses on the definition of another formulation of this operation, and puts it in a matrix form to illuminate the computational complexity, more precision guaranty and a minimal execution time. We propose to use each information source in a form of a matrix, which contains 0 value in lines that do not contain the masses (m(Ai) = 0) or once m(Ai) is not null (m(Ai) ≠ 0). The use of this expressed matrix attempts to ameliorate Dempster-Shafer operator via initialing either a criterion or criteria sources’ solution, increasing the efficiency of the Dempster-Shafer operator and facilitates the combination among the sources. We evaluate our approach by conducting a case study for showing the effectiveness of this matrix.展开更多
基金supported by the National Natural Science Foundation of China(71471087)
文摘The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.
文摘The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundancy and extra information acquired. The fusion of redundant information can reduce the overall uncertainty and thus helps to provide information specified more precisely. Several sensors providing redundant information can also be used to increase reliability in the case of error, omission or failure of sensors. The combination operators are exponential and are more complex in terms of calculation;the Dempster-Shafer operator is exponential for more than three (3) information sources?[1] [2]. Our work focuses on the definition of another formulation of this operation, and puts it in a matrix form to illuminate the computational complexity, more precision guaranty and a minimal execution time. We propose to use each information source in a form of a matrix, which contains 0 value in lines that do not contain the masses (m(Ai) = 0) or once m(Ai) is not null (m(Ai) ≠ 0). The use of this expressed matrix attempts to ameliorate Dempster-Shafer operator via initialing either a criterion or criteria sources’ solution, increasing the efficiency of the Dempster-Shafer operator and facilitates the combination among the sources. We evaluate our approach by conducting a case study for showing the effectiveness of this matrix.