A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of...A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-Ⅱ instability, the initial two-dimensional steep wave trains evolved into three'dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolutiin of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51079024)the National Foundation for Creative Research Groups(Grant No.50921001)
文摘A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-Ⅱ instability, the initial two-dimensional steep wave trains evolved into three'dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolutiin of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.