In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor t...In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme,combined with a comprehensive rigorous computational fluid dynamics(CFD)model.The eddy-dissipation-concept(EDC)model is introduced to deal with turbulence-chemistry interaction of cracking gas,especially for the multi-step radical kinetics.Considering the high aspect ratio and severe gradient phenomenon,numerical strategies such as grid resolution and refinement,stepping method and relaxation technique at different levels are employed to accelerate convergence.Large scale of radial nonuniformity in the vicinity of the tube wall is investigated.Spatial distributions of each radical reaction rate are first studied,and made it possible to identify the dominant elementary reactions.Additionally,a series of operating conditions including the feedstock feed rate,wall temperature profile and heat flux profile towards the reactor tubes are investigated.The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.展开更多
Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) techn...Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.展开更多
基金Supported by the National Science&Technology Supporting Plan(2012BAF05B00)the National Basic Research Program(2012CB720500)
文摘In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme,combined with a comprehensive rigorous computational fluid dynamics(CFD)model.The eddy-dissipation-concept(EDC)model is introduced to deal with turbulence-chemistry interaction of cracking gas,especially for the multi-step radical kinetics.Considering the high aspect ratio and severe gradient phenomenon,numerical strategies such as grid resolution and refinement,stepping method and relaxation technique at different levels are employed to accelerate convergence.Large scale of radial nonuniformity in the vicinity of the tube wall is investigated.Spatial distributions of each radical reaction rate are first studied,and made it possible to identify the dominant elementary reactions.Additionally,a series of operating conditions including the feedstock feed rate,wall temperature profile and heat flux profile towards the reactor tubes are investigated.The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.
文摘Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.