Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmosph...Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmospheric effects and methods for correcting them are still imperfect and disputed. This research supposed and practiced an indirect, fast, and operational method to conduct atmospheric correction of images for getting comparable vegetation index values in different times. It tries to find a variable free from atmospheric effects, e.g., the mean vegetation coverage value of the whole study area, as a basis to reduce atmospheric correction parameters by establishing mathematical models and conducting simulation calculations. Using these parameters, the images can be atmospherically corrected. And then, the vegetation index and corresponding vegetation coverage values for all pixels, the vegetation coverage maps and coverage grade maps for different years were calculated, i.e., the plant cover monitoring was realized. Using the vegetation coverage grade maps and the ground slope grade map from a DEM to generate soil erosion grade maps for different years, the soil erosion monitoring was also realized. The results show that in the study area the vegetation coverage was the lowest in 1976, much better in 1989, but a bit worse again in 2001. Towards the soil erosion, it had been mitigated continuously from 1976 to 1989 and then to 2001. It is interesting that a little decrease of vegetation coverage from 1989 to 2001 did not lead to increase of soil erosion. The reason is that the decrease of vegetation coverage was chiefly caused by urbanization and thus mainly occurred in very gentle terrains, where soil erosion was naturally slight. The results clearly indicate the details of plant cover and soil erosion change in 25 years and also offer a scientific foundation for plant and soil conservation.展开更多
As one of the important vegetation parameters, vegetation fractional coverage (VFC) is more difficult to measure accurately among a good many parameters of plant communities. The temperate typical steppe in the nort...As one of the important vegetation parameters, vegetation fractional coverage (VFC) is more difficult to measure accurately among a good many parameters of plant communities. The temperate typical steppe in the north of China was chosen for investigation in the present study and a digital camera was used to measure herb community coverage in the field, adopting methods of ocular estimation, gridding measurement, visual interpretation, supervised classification, and information extraction of color spatial transformation to calculate the VFC of images captured by the digital camera. In addition VFC calculated by various methods was analyzed and compared VFC, enabling us to propose an effective method for measuring VFC using a digital camera. The results of the present study indicate that: (i) as two common useful and effective methods of measuring VFC with a digital camera, not only does the error of estimated values of visual estimation and supervised classification vary considerably, but the degree of automatization is very low and depends, to a great extent, on the manipulator; (ii) although the method of visual interpretation may assure the precision of the calculated VFC and enable the precision of results obtained using other methods to be determined, as far as large quantities of data are concerned, this method has the disadvantages of wasting time and energy, and the applications of this method are limited; (iii) the precision and stability of VFC calculated using the grid and node method are superior to those of visual estimation and supervised classification and inferior to those of visual interpretation, but, as for visual interpretation and supervised classification, gridding measurements are difficult to apply in practice because they are not time efficient; and (iv) in terms of the precision of calculation of the VFC, an information-extracting model based on an intensity, hue, saturation (IHS) color space-multi-component series segmentation strategy is superior to methods of 展开更多
Array gain would be well exploited to improve power coverage if some powerful multipath components from different radio links can coherently combine at the receiver (Rx). Thus, in this paper, an algorithm is propose...Array gain would be well exploited to improve power coverage if some powerful multipath components from different radio links can coherently combine at the receiver (Rx). Thus, in this paper, an algorithm is proposed for transmission in simulcast system, where partial channel state information (CSI) is needed. Based on measured multipath channel, performance of the proposed algorithm is evaluated. According to simulation results, the proposed algorithm outperforms the direction summation (DS) scheme and multipath antenna diversity (MAD) algorithm, with 2~4 dB advantage over the latters. Especially in line of sight (LOS) scenario, the advantage is more obvious. Besides, the proposed algorithm brings more gain with increasing number of transmit antennas without additional power. Finally, robustness of the proposed algorithm is examined with imperfect CSI.展开更多
文摘Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmospheric effects and methods for correcting them are still imperfect and disputed. This research supposed and practiced an indirect, fast, and operational method to conduct atmospheric correction of images for getting comparable vegetation index values in different times. It tries to find a variable free from atmospheric effects, e.g., the mean vegetation coverage value of the whole study area, as a basis to reduce atmospheric correction parameters by establishing mathematical models and conducting simulation calculations. Using these parameters, the images can be atmospherically corrected. And then, the vegetation index and corresponding vegetation coverage values for all pixels, the vegetation coverage maps and coverage grade maps for different years were calculated, i.e., the plant cover monitoring was realized. Using the vegetation coverage grade maps and the ground slope grade map from a DEM to generate soil erosion grade maps for different years, the soil erosion monitoring was also realized. The results show that in the study area the vegetation coverage was the lowest in 1976, much better in 1989, but a bit worse again in 2001. Towards the soil erosion, it had been mitigated continuously from 1976 to 1989 and then to 2001. It is interesting that a little decrease of vegetation coverage from 1989 to 2001 did not lead to increase of soil erosion. The reason is that the decrease of vegetation coverage was chiefly caused by urbanization and thus mainly occurred in very gentle terrains, where soil erosion was naturally slight. The results clearly indicate the details of plant cover and soil erosion change in 25 years and also offer a scientific foundation for plant and soil conservation.
文摘As one of the important vegetation parameters, vegetation fractional coverage (VFC) is more difficult to measure accurately among a good many parameters of plant communities. The temperate typical steppe in the north of China was chosen for investigation in the present study and a digital camera was used to measure herb community coverage in the field, adopting methods of ocular estimation, gridding measurement, visual interpretation, supervised classification, and information extraction of color spatial transformation to calculate the VFC of images captured by the digital camera. In addition VFC calculated by various methods was analyzed and compared VFC, enabling us to propose an effective method for measuring VFC using a digital camera. The results of the present study indicate that: (i) as two common useful and effective methods of measuring VFC with a digital camera, not only does the error of estimated values of visual estimation and supervised classification vary considerably, but the degree of automatization is very low and depends, to a great extent, on the manipulator; (ii) although the method of visual interpretation may assure the precision of the calculated VFC and enable the precision of results obtained using other methods to be determined, as far as large quantities of data are concerned, this method has the disadvantages of wasting time and energy, and the applications of this method are limited; (iii) the precision and stability of VFC calculated using the grid and node method are superior to those of visual estimation and supervised classification and inferior to those of visual interpretation, but, as for visual interpretation and supervised classification, gridding measurements are difficult to apply in practice because they are not time efficient; and (iv) in terms of the precision of calculation of the VFC, an information-extracting model based on an intensity, hue, saturation (IHS) color space-multi-component series segmentation strategy is superior to methods of
基金supported by the National Natural Science Foundation of China(61171105)China Information Technology Designing & Consulting Institute Ltd(CITC)-School of Information and Communication Engineering(SICE)in BUPT Graduate Innovation Fund for 2011
文摘Array gain would be well exploited to improve power coverage if some powerful multipath components from different radio links can coherently combine at the receiver (Rx). Thus, in this paper, an algorithm is proposed for transmission in simulcast system, where partial channel state information (CSI) is needed. Based on measured multipath channel, performance of the proposed algorithm is evaluated. According to simulation results, the proposed algorithm outperforms the direction summation (DS) scheme and multipath antenna diversity (MAD) algorithm, with 2~4 dB advantage over the latters. Especially in line of sight (LOS) scenario, the advantage is more obvious. Besides, the proposed algorithm brings more gain with increasing number of transmit antennas without additional power. Finally, robustness of the proposed algorithm is examined with imperfect CSI.