Sensing coverage is a fundamental problem in sensors networks. Different from traditional isotropic sensors with sensing disk, directional sensors may have a limited angle of sensing range due to special applications....Sensing coverage is a fundamental problem in sensors networks. Different from traditional isotropic sensors with sensing disk, directional sensors may have a limited angle of sensing range due to special applications. In this paper, we study the coverage problem in directional sensor networks (DSNs) with the rotatable orientation for each sensor. We propose the optimal coverage in directional sensor networks (OCDSN) problem to cover maximal area while activating as few sensors as possible. Then we prove the OCDSN to be NP-complete and propose the Voronoi-based centralized approximation (VCA) algorithm and the Voronoi-based distributed approximation (VDA) algorithm of the solution to the OCDSN problem. Finally, extensive simulation is executed to demonstrate the performance of the proposed algorithms.展开更多
针对给定目标区域的节点自主部署问题,传统的虚拟力方法容易产生覆盖重叠和覆盖空洞,并且计算所需要的参数具有不确定性。文中提出了两种基于Voronoi图的三维移动传感器网络的自主部署算法TDADA-Ⅰ和TDADA-Ⅱ(Autonomous Deployment Alg...针对给定目标区域的节点自主部署问题,传统的虚拟力方法容易产生覆盖重叠和覆盖空洞,并且计算所需要的参数具有不确定性。文中提出了两种基于Voronoi图的三维移动传感器网络的自主部署算法TDADA-Ⅰ和TDADA-Ⅱ(Autonomous Deployment Algorithm of Three-dimensional Mobile Sensor Network Based on Voronoi Diagram)。Voronoi图具有良好的邻近性、邻接性和快速划分区域的特性。该算法计算每个Voronoi区域的重心,使节点向Voronoi区域的重心移动,经过多次迭代构造Voronoi图使得节点移动到最佳位置,从而提高被监测区域的网络覆盖率。仿真实验结果表明,TDADA-Ⅰ和TDADA-Ⅱ有效的提高了被监测区域的网络覆盖率,TDADA-Ⅰ从85.27%提高到了96.04%,TDADA-Ⅱ从85.27%提高到了92.07%。实验结果证明了算法的有效性和正确性。展开更多
文摘Sensing coverage is a fundamental problem in sensors networks. Different from traditional isotropic sensors with sensing disk, directional sensors may have a limited angle of sensing range due to special applications. In this paper, we study the coverage problem in directional sensor networks (DSNs) with the rotatable orientation for each sensor. We propose the optimal coverage in directional sensor networks (OCDSN) problem to cover maximal area while activating as few sensors as possible. Then we prove the OCDSN to be NP-complete and propose the Voronoi-based centralized approximation (VCA) algorithm and the Voronoi-based distributed approximation (VDA) algorithm of the solution to the OCDSN problem. Finally, extensive simulation is executed to demonstrate the performance of the proposed algorithms.
文摘针对给定目标区域的节点自主部署问题,传统的虚拟力方法容易产生覆盖重叠和覆盖空洞,并且计算所需要的参数具有不确定性。文中提出了两种基于Voronoi图的三维移动传感器网络的自主部署算法TDADA-Ⅰ和TDADA-Ⅱ(Autonomous Deployment Algorithm of Three-dimensional Mobile Sensor Network Based on Voronoi Diagram)。Voronoi图具有良好的邻近性、邻接性和快速划分区域的特性。该算法计算每个Voronoi区域的重心,使节点向Voronoi区域的重心移动,经过多次迭代构造Voronoi图使得节点移动到最佳位置,从而提高被监测区域的网络覆盖率。仿真实验结果表明,TDADA-Ⅰ和TDADA-Ⅱ有效的提高了被监测区域的网络覆盖率,TDADA-Ⅰ从85.27%提高到了96.04%,TDADA-Ⅱ从85.27%提高到了92.07%。实验结果证明了算法的有效性和正确性。