The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and hu...The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and th展开更多
Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based o...Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based on previous studies, the climate drought index can be used to assess the evolutionary trend of the ecological environment under various arid climatic conditions. It is necessary for us to further explore the relationship between vegetation coverage(index) and climate drought conditions. Therefore, in this study, based on MODIS-NDVI products and meteorological observation data, the Palmer Drought Severity Index(PDSI) and vegetation coverage in North China were first calculated. Then, the interannual variations of PDSI and vegetation coverage during 2001–2013 were analyzed using a Theil-Sen slope estimator. Finally, an ecoregion perspective of the correlation between them was discussed. The experimental results demonstrated that the PDSI index and vegetation coverage value varied over different ecoregions. During the period 2001–2013, vegetation coverage increased in the southern and northern mountains of North China, while it showed a decreasing trend in the Beijing-Tianjin-Tangshan City Circle area and suburban agricultural zone located in Hebei Province and Henan Province). Over 13 years, the climate of the northeastern part of North China became more humid, while in the southern part of North China, it tended to be dry. According to the correlation analysis results, 73.37% of North China showed a positive correlation between the vegetation coverage and climate drought index. A negative correlation was observed mainly in urban and suburban areas of Beijing, Tianjin, Hebei Province, and Henan Province. In most parts of North China, drought conditions in summer and autumn had a strong influence on vegetation coverage.展开更多
基金Major Project of High-resolution Earth Observation System
文摘The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and th
基金International Science & Technology Cooperation Program of China,No.2014DFA21620The China Scholarship Fund
文摘Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based on previous studies, the climate drought index can be used to assess the evolutionary trend of the ecological environment under various arid climatic conditions. It is necessary for us to further explore the relationship between vegetation coverage(index) and climate drought conditions. Therefore, in this study, based on MODIS-NDVI products and meteorological observation data, the Palmer Drought Severity Index(PDSI) and vegetation coverage in North China were first calculated. Then, the interannual variations of PDSI and vegetation coverage during 2001–2013 were analyzed using a Theil-Sen slope estimator. Finally, an ecoregion perspective of the correlation between them was discussed. The experimental results demonstrated that the PDSI index and vegetation coverage value varied over different ecoregions. During the period 2001–2013, vegetation coverage increased in the southern and northern mountains of North China, while it showed a decreasing trend in the Beijing-Tianjin-Tangshan City Circle area and suburban agricultural zone located in Hebei Province and Henan Province). Over 13 years, the climate of the northeastern part of North China became more humid, while in the southern part of North China, it tended to be dry. According to the correlation analysis results, 73.37% of North China showed a positive correlation between the vegetation coverage and climate drought index. A negative correlation was observed mainly in urban and suburban areas of Beijing, Tianjin, Hebei Province, and Henan Province. In most parts of North China, drought conditions in summer and autumn had a strong influence on vegetation coverage.