In this paper,strategies are provided for a powerful numerical manifold method(NMM)with h and p refinement in analyses of elasticity and elasto-plasticity.The new NMM is based on the concept of the independent cover,w...In this paper,strategies are provided for a powerful numerical manifold method(NMM)with h and p refinement in analyses of elasticity and elasto-plasticity.The new NMM is based on the concept of the independent cover,which gets rid of NMM's important defect of rank deficiency when using higher-order local approximation functions.Several techniques are presented.In terms of mesh generation,a relationship between the quadtree structure and the mathematical mesh is established to allow a robust h-refinement.As to the condition number,a scaling based on the physical patch is much better than the classical scaling based on the mathematical patch;an overlapping width of 1%–10%can ensure a good condition number for 2nd,3rd,and 4th order local approximation functions;the small element issue can be overcome after the local approximation on small patch is replaced by that on a regular patch.On numerical accuracy,local approximation using complete polynomials is necessary for the optimal convergence rate.Two issues that may damage the convergence rate should be prevented.The first is to approximate the curved boundary of a higher-order element by overly few straight lines,and the second is excessive overlapping width.Finally,several refinement strategies are verified by numerical examples.展开更多
Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is b...Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are “truly” meshless methods.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52130905 and 52079002)。
文摘In this paper,strategies are provided for a powerful numerical manifold method(NMM)with h and p refinement in analyses of elasticity and elasto-plasticity.The new NMM is based on the concept of the independent cover,which gets rid of NMM's important defect of rank deficiency when using higher-order local approximation functions.Several techniques are presented.In terms of mesh generation,a relationship between the quadtree structure and the mathematical mesh is established to allow a robust h-refinement.As to the condition number,a scaling based on the physical patch is much better than the classical scaling based on the mathematical patch;an overlapping width of 1%–10%can ensure a good condition number for 2nd,3rd,and 4th order local approximation functions;the small element issue can be overcome after the local approximation on small patch is replaced by that on a regular patch.On numerical accuracy,local approximation using complete polynomials is necessary for the optimal convergence rate.Two issues that may damage the convergence rate should be prevented.The first is to approximate the curved boundary of a higher-order element by overly few straight lines,and the second is excessive overlapping width.Finally,several refinement strategies are verified by numerical examples.
文摘Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are “truly” meshless methods.