Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
In this paper, the influence of init ial imperfection and coupling between bending and extension on vibration, buckling and nonlinear dynamic stability of laminated plates is studied. The governing e quation is deri...In this paper, the influence of init ial imperfection and coupling between bending and extension on vibration, buckling and nonlinear dynamic stability of laminated plates is studied. The governing e quation is derived. It is a nonlinear modified Mathieu Equation. Numerical solut ions of 5 typical composite materials namely, Glass_epoxy Scotch_1002, Aramid_ep oxy Kevlar_49, Boron_epoxy B4_5505, Graphite_epoxy T300_5208 and AS_3501 are co mputed. Results reveal that the existence of initial imperfection, and also coup ling effect,make the plates much more sensitive to entering parametric resonance with amplitude greater than that of perfect plates. Coupl ing effect for different composite laminates, especially, for that with few laye rs, is different. If coupling effect is neglected, the design of plate structure s for buckling and dynamic stability would unconservatively be for more than 10% .展开更多
We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic press...We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic pressure experience radial buckling. As a result of this, different buckling modes are obtained depending on the inter-tube separation d as well as the number of constituent tubes N and the innermost tube diameter. All of the buckling modes are classified into two deformation phases. In the first phase, which corresponds to an elliptic deformation, the radial stiffness increases rapidly with increasing N. In contrast, the second phase yields wavy, corrugated structures along the circumference for which the radial stiffness declines with increasing N. The hard-to-soft phase transition in radial buckling is a direct consequence of the core-shell structure of MWNTs. Special attention is devoted to how the variation in d affects the critical tube number Nc, which separates the two deformation phases observed in N -walled nanotubes, i.e., the elliptic phase for N Nc. We demonstrate that a larger d tends to result in a smaller Nc, which is attributed to the primary role of the interatomic forces between concentric tubes in the hard-to-soft transition during the radial buckling of MWNTs.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
文摘In this paper, the influence of init ial imperfection and coupling between bending and extension on vibration, buckling and nonlinear dynamic stability of laminated plates is studied. The governing e quation is derived. It is a nonlinear modified Mathieu Equation. Numerical solut ions of 5 typical composite materials namely, Glass_epoxy Scotch_1002, Aramid_ep oxy Kevlar_49, Boron_epoxy B4_5505, Graphite_epoxy T300_5208 and AS_3501 are co mputed. Results reveal that the existence of initial imperfection, and also coup ling effect,make the plates much more sensitive to entering parametric resonance with amplitude greater than that of perfect plates. Coupl ing effect for different composite laminates, especially, for that with few laye rs, is different. If coupling effect is neglected, the design of plate structure s for buckling and dynamic stability would unconservatively be for more than 10% .
文摘We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic pressure experience radial buckling. As a result of this, different buckling modes are obtained depending on the inter-tube separation d as well as the number of constituent tubes N and the innermost tube diameter. All of the buckling modes are classified into two deformation phases. In the first phase, which corresponds to an elliptic deformation, the radial stiffness increases rapidly with increasing N. In contrast, the second phase yields wavy, corrugated structures along the circumference for which the radial stiffness declines with increasing N. The hard-to-soft phase transition in radial buckling is a direct consequence of the core-shell structure of MWNTs. Special attention is devoted to how the variation in d affects the critical tube number Nc, which separates the two deformation phases observed in N -walled nanotubes, i.e., the elliptic phase for N Nc. We demonstrate that a larger d tends to result in a smaller Nc, which is attributed to the primary role of the interatomic forces between concentric tubes in the hard-to-soft transition during the radial buckling of MWNTs.