In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by th...In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.展开更多
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provi...A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372166,11372147,61074142,and 11072117)the Scientific Research Fund of Zhejiang Province,China(Grant No.LY13A010005)+1 种基金the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China,and the Government of the Hong Kong Administrative Region,China(Grant No.119011)
文摘In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z206)the Research Fund for Joint China-Canada Research and Development (R&D) Projects of The Ministry of Science and Technology,China (Grant No. 2010DFA11320)
文摘A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.