The clinic applications of bioabsorbable magnesium(Mg)and its alloys have been significantly restricted owing to their poor corrosion resistance.Besides elemental alloying,surface modification and functionality is a m...The clinic applications of bioabsorbable magnesium(Mg)and its alloys have been significantly restricted owing to their poor corrosion resistance.Besides elemental alloying,surface modification and functionality is a major approach to increasing corrosion resistance for magnesium alloys.This article reviews the cutting-edge advances and progress of biodegradable surface coatings upon Mg alloys over the last decades,aims to build up a knowledge framework of surface modification on biodegradable Mg alloys.A considerable number of conversion,deposition,mechanical and functional coatings and their preparation methods are discussed.The emphasis has been placed on the composition of chemical conversion and deposited coatings to overcome the disadvantages of adhesion,corrosion resistance and biocompatibility of a single coating for biomedical materials.The issues have been addressed on the integration of the structural and functional factors of the composite coatings.展开更多
Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the alumin...Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...展开更多
Magnesium and its alloys have been used in many industries, but they are reactive and require protection against aggressive environments. In this study, oxide coatings were applied on AZ91D magnesium alloy using micro...Magnesium and its alloys have been used in many industries, but they are reactive and require protection against aggressive environments. In this study, oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process. Then, in order to seal the pores of the MAO coatings, the samples were immersed in cerium bath for different times. The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. The amount of the porosity of the coating was measured by electrochemical method. It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings. The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly. Furthermore, this coating had the lowest amount of the porosity among the coatings.展开更多
In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementa...In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementation process.The surface morphologies and microstructures of the chromizing coatings were observed using scanning electron microscopy(SEM),and the phase constitutions were investigated by X-ray diffraction(XRD).Electrochemical corrosion behavior of the chromizing coatings in simulated oilfield ...展开更多
A fluoride conversion coating was successfully prepared on AZ31B magnesium alloy by chemical reaction in hydrofluoric acid. Morphologies, composition, bonding strength, corrosion properties, in vitro cytotoxicity and ...A fluoride conversion coating was successfully prepared on AZ31B magnesium alloy by chemical reaction in hydrofluoric acid. Morphologies, composition, bonding strength, corrosion properties, in vitro cytotoxicity and antibacterial properties of the coating were investigated, respectively. The scanning electron microscopy observations revealed a dense coating with some irregular pores. The thin-film X-ray diffraction analysis indicated that the coating was mainly composed of MgO and MgF2. The electrochemical impedance spectroscopy results showed that the fluoride conversion coating significantly improved the corrosion resistance of AZ31B. The hydroxyapatite formed on the surface of the fluoride coated AZ31 B after being immersed in the simulated blood plasma indicated the good bioactivity of the material. The in vitro cytotoxicity test showed that the fluoride coated AZ31B alloy was not toxic to BMMSCs (human bone marrow-derived mesenchymal stem cells). It was also found that the fluoride coated AZ31 B alloy had antibacterial capability.展开更多
The conversion coating was formed by dipping AA6061 in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution at room temperature. The formation process and the anti-corrosion perform...The conversion coating was formed by dipping AA6061 in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution at room temperature. The formation process and the anti-corrosion performance of the conversion coating were investigated using electrochemical test and salt spray test (SST), respectively. The electrochemical test shows that the Zr/Ti and ATMP coating improves the corrosion resistance of AA6061 as good as the chromate (VI) coating. But the results of SST show that the corrosion resistance of Zr/Ti and ATMP coating is not as good as the chromate (VI) coating. The corrosion area is less than 2% after 72 h.展开更多
基金This research was financially supported by National Natural Science Foundation of China(51571134)SDUST Research Fund(2014TDJH104).
文摘The clinic applications of bioabsorbable magnesium(Mg)and its alloys have been significantly restricted owing to their poor corrosion resistance.Besides elemental alloying,surface modification and functionality is a major approach to increasing corrosion resistance for magnesium alloys.This article reviews the cutting-edge advances and progress of biodegradable surface coatings upon Mg alloys over the last decades,aims to build up a knowledge framework of surface modification on biodegradable Mg alloys.A considerable number of conversion,deposition,mechanical and functional coatings and their preparation methods are discussed.The emphasis has been placed on the composition of chemical conversion and deposited coatings to overcome the disadvantages of adhesion,corrosion resistance and biocompatibility of a single coating for biomedical materials.The issues have been addressed on the integration of the structural and functional factors of the composite coatings.
基金supported by the Provincial Natural Science Foundation of Hunan Province (04JJ30817)
文摘Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...
文摘Magnesium and its alloys have been used in many industries, but they are reactive and require protection against aggressive environments. In this study, oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process. Then, in order to seal the pores of the MAO coatings, the samples were immersed in cerium bath for different times. The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. The amount of the porosity of the coating was measured by electrochemical method. It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings. The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly. Furthermore, this coating had the lowest amount of the porosity among the coatings.
基金supported by the Science and Technology Programs for Research and Development of Shaanxi Province (2008K01-31)
文摘In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementation process.The surface morphologies and microstructures of the chromizing coatings were observed using scanning electron microscopy(SEM),and the phase constitutions were investigated by X-ray diffraction(XRD).Electrochemical corrosion behavior of the chromizing coatings in simulated oilfield ...
基金the financial support of the National Basic Research Program of China(973 Program,No.2012CB619101)the Basic Application Research of Yunnan Province(No. KKSA201151053)
文摘A fluoride conversion coating was successfully prepared on AZ31B magnesium alloy by chemical reaction in hydrofluoric acid. Morphologies, composition, bonding strength, corrosion properties, in vitro cytotoxicity and antibacterial properties of the coating were investigated, respectively. The scanning electron microscopy observations revealed a dense coating with some irregular pores. The thin-film X-ray diffraction analysis indicated that the coating was mainly composed of MgO and MgF2. The electrochemical impedance spectroscopy results showed that the fluoride conversion coating significantly improved the corrosion resistance of AZ31B. The hydroxyapatite formed on the surface of the fluoride coated AZ31 B after being immersed in the simulated blood plasma indicated the good bioactivity of the material. The in vitro cytotoxicity test showed that the fluoride coated AZ31B alloy was not toxic to BMMSCs (human bone marrow-derived mesenchymal stem cells). It was also found that the fluoride coated AZ31 B alloy had antibacterial capability.
基金supported by the Science and Technology Plan Project of Liaoning Province,China(No.2006221011).
文摘The conversion coating was formed by dipping AA6061 in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution at room temperature. The formation process and the anti-corrosion performance of the conversion coating were investigated using electrochemical test and salt spray test (SST), respectively. The electrochemical test shows that the Zr/Ti and ATMP coating improves the corrosion resistance of AA6061 as good as the chromate (VI) coating. But the results of SST show that the corrosion resistance of Zr/Ti and ATMP coating is not as good as the chromate (VI) coating. The corrosion area is less than 2% after 72 h.