During the past few years, most of the new developed numerical weather prediction models adopt the strategy of multi-scale technique. Therefore, China Meteorological Administration has devoted to developing a new gene...During the past few years, most of the new developed numerical weather prediction models adopt the strategy of multi-scale technique. Therefore, China Meteorological Administration has devoted to developing a new generation of global and regional multi-scale model since 2003. In order to validate the performance of the GRAPES (Global and Regional Assimilation and PrEdiction System) model both for its scientific design and program coding, a suite of idealized tests has been proposed and conducted, which includes the density flow test, three-dimensional mountain wave and the cross-polar flow test. The density flow experiment indicates that the dynamic core has the ability to simulate the fine scale nonlinear flow structures and its transient features. While the three-dimensional mountain wave test shows that the model can reproduce the horizontal and vertical propagation of internal gravity waves quite well. Cross-polar flow test demonstrates the rationality of both for the semi-Lagrangian departure point calculation and the discretization of the model near the poles. The real case forecasts reveal that the model has the ability to predict the large-scale weather regimes in summer such as the subtropical high, and to capture the major synoptic patterns in the mid and high latitudes.展开更多
基金National Key Technology Research and Development (Grant Nos. 2006BAC02B01 and 2006BAC03B03)National High-Tech Research & Development Program of China (Grant No. 2006AA01A123)National Natural Science Foundation of China (Grant No. 40505023)
文摘During the past few years, most of the new developed numerical weather prediction models adopt the strategy of multi-scale technique. Therefore, China Meteorological Administration has devoted to developing a new generation of global and regional multi-scale model since 2003. In order to validate the performance of the GRAPES (Global and Regional Assimilation and PrEdiction System) model both for its scientific design and program coding, a suite of idealized tests has been proposed and conducted, which includes the density flow test, three-dimensional mountain wave and the cross-polar flow test. The density flow experiment indicates that the dynamic core has the ability to simulate the fine scale nonlinear flow structures and its transient features. While the three-dimensional mountain wave test shows that the model can reproduce the horizontal and vertical propagation of internal gravity waves quite well. Cross-polar flow test demonstrates the rationality of both for the semi-Lagrangian departure point calculation and the discretization of the model near the poles. The real case forecasts reveal that the model has the ability to predict the large-scale weather regimes in summer such as the subtropical high, and to capture the major synoptic patterns in the mid and high latitudes.