This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial i...This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B*(X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B*(X) are completely described by the corona of the Stone-Cech compactification of X.展开更多
基金Project supported by the 973 Project of the Ministry of Science and Technology of China, the National Natural Science Foundation of China (No.10201007) the Doctoral Programme Foundation of the Ministry of Education of China and the Shanghai Science and
文摘This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B*(X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B*(X) are completely described by the corona of the Stone-Cech compactification of X.