The European Space Agency(ESA)’s Swarm constellation of a trio of geomagnetic survey satellites in nearly circular polar orbits at altitude about 500 km was launched on 22 November 2013 and has been mapping the Earth...The European Space Agency(ESA)’s Swarm constellation of a trio of geomagnetic survey satellites in nearly circular polar orbits at altitude about 500 km was launched on 22 November 2013 and has been mapping the Earth’s global magnetic field in unprecedented details,helping scientists better understand how the geomagnetic field is generated and maintained inside the Earth’s fluid core and how the Earth’s external magnetic environment is changing.This review discusses a new novel constellation of the geomagnetic survey satellites that consists of at least four satellites:two satellites are in lower-latitude and nearly circular orbits at altitude about 450 km;two further satellites are marked by nearly polar but strongly eccentric orbits with perigee about 200 km and apogee about 5000 km.The new geomagnetic satellites are equipped with highly stable optical benches,high-precision fluxgate magnetometers and scalar magnetometers which are capable of mapping the Earth’s three-dimensional magnetic field in unprecedented accuracies and details.The new constellation will help elucidate different contributions to the measured geomagnetic field:the core dynamo field,the lithospheric magnetic field,the magnetic fields produced by currents in the ionosphere and the magnetosphere as well as by the currents coupling the ionosphere and magnetosphere,and the magnetic fields induced from the electrically conducting mantle,lithosphere and oceans.In comparison to the Swarm mission,it will provide higher-accuracy,higher-resolution and higher-dimension measurements of the geomagnetic field required for shedding new insights into the core dynamo processes and the Earth’s space magnetic systems along with a wide range of important applications.展开更多
针对永磁同步轮毂电机运行过程中发热明显,严重影响永磁体性能和电机寿命的问题。开展电机铁心材料磁滞特性试验,测试一维磁化条件下的磁滞回线,考虑不同磁场强度和磁场高频特性对磁滞特性的影响。考虑到经典Preisach理论无法解释磁场...针对永磁同步轮毂电机运行过程中发热明显,严重影响永磁体性能和电机寿命的问题。开展电机铁心材料磁滞特性试验,测试一维磁化条件下的磁滞回线,考虑不同磁场强度和磁场高频特性对磁滞特性的影响。考虑到经典Preisach理论无法解释磁场频率过高的现象,基于对称小回环(Symmetric minor loops,SML)的密度函数离散化方法建立高频磁场强度变化的磁滞特性模型,通过与试验结果的对比发现该方法预测结果准确,对于在不同频率下的磁化特性有很好的模拟效果。根据铁心损耗的影响因素分析,提出考虑旋转磁化影响、磁密谐波影响的铁心损耗旋-交系数计算铁心损耗。最后建立电机三维温度场模型,仿真计算不同工况下各个部件的温升情况及危险点,并在试验台上进行电机温升试验,与仿真结果进行对比验证。仿真结果电机温度最大值为73.2℃,试验最高温度为72.6℃,证明电机损耗计算以及温度场仿真的准确性。研究结果表明,考虑磁场强度和磁场频率对铁心磁化特性的影响,能有效改善电机电磁计算中的缺陷,提高电机电磁场、损耗及温度预测的准确性。展开更多
基金K Zhang is supported by Macao Science and Technology Development Fund grant 0001/2019/A1Macao Foundationthe preresearch Project on Civil Aerospace Technologies of CNSA(Grants No.D020303 and D020308)。
文摘The European Space Agency(ESA)’s Swarm constellation of a trio of geomagnetic survey satellites in nearly circular polar orbits at altitude about 500 km was launched on 22 November 2013 and has been mapping the Earth’s global magnetic field in unprecedented details,helping scientists better understand how the geomagnetic field is generated and maintained inside the Earth’s fluid core and how the Earth’s external magnetic environment is changing.This review discusses a new novel constellation of the geomagnetic survey satellites that consists of at least four satellites:two satellites are in lower-latitude and nearly circular orbits at altitude about 450 km;two further satellites are marked by nearly polar but strongly eccentric orbits with perigee about 200 km and apogee about 5000 km.The new geomagnetic satellites are equipped with highly stable optical benches,high-precision fluxgate magnetometers and scalar magnetometers which are capable of mapping the Earth’s three-dimensional magnetic field in unprecedented accuracies and details.The new constellation will help elucidate different contributions to the measured geomagnetic field:the core dynamo field,the lithospheric magnetic field,the magnetic fields produced by currents in the ionosphere and the magnetosphere as well as by the currents coupling the ionosphere and magnetosphere,and the magnetic fields induced from the electrically conducting mantle,lithosphere and oceans.In comparison to the Swarm mission,it will provide higher-accuracy,higher-resolution and higher-dimension measurements of the geomagnetic field required for shedding new insights into the core dynamo processes and the Earth’s space magnetic systems along with a wide range of important applications.
文摘针对永磁同步轮毂电机运行过程中发热明显,严重影响永磁体性能和电机寿命的问题。开展电机铁心材料磁滞特性试验,测试一维磁化条件下的磁滞回线,考虑不同磁场强度和磁场高频特性对磁滞特性的影响。考虑到经典Preisach理论无法解释磁场频率过高的现象,基于对称小回环(Symmetric minor loops,SML)的密度函数离散化方法建立高频磁场强度变化的磁滞特性模型,通过与试验结果的对比发现该方法预测结果准确,对于在不同频率下的磁化特性有很好的模拟效果。根据铁心损耗的影响因素分析,提出考虑旋转磁化影响、磁密谐波影响的铁心损耗旋-交系数计算铁心损耗。最后建立电机三维温度场模型,仿真计算不同工况下各个部件的温升情况及危险点,并在试验台上进行电机温升试验,与仿真结果进行对比验证。仿真结果电机温度最大值为73.2℃,试验最高温度为72.6℃,证明电机损耗计算以及温度场仿真的准确性。研究结果表明,考虑磁场强度和磁场频率对铁心磁化特性的影响,能有效改善电机电磁计算中的缺陷,提高电机电磁场、损耗及温度预测的准确性。